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 إقرار
 

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Enhancing and Combining a Recent  

K-means Family of Algorithms for Better Results 

 التحسين والجمع بين خوارزميات
 K-means الحديثة للحصول على نتائج أفضل 

دي الخاص، باستثناء ما تمت الإشارة إليه أقر بأن ما اشتملت عليه هذه الرسالة إنما هي نتاج جه
ن هذه الرسالة ككل، أو أي جزء منها لم يقدم من قبل لنيل درجة أو لقب علمي أو  حيثما ورد، وا 

 بحثي لدى أية مؤسسة تعليمية أو بحثية أخرى.
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 التحسين والجمع بين خوارزميات
K-means الحديثة للحصول على نتائج أفضل 

 رائد توفيق الدحدوح

 الملخص

ابهة في ن مجموعات متشضم ،واسع في العقود الأخيرة لتحليل البيانات وتجميعها بشكلالعنقدة ستخدم ت
 العنقدةالتي تعتبر من أكثر خوارزميات  ،K-meansهي خوارزمية  العنقدةأحد خوارزميات ، الخصائص

شيوعاً، ويرجع سبب شهرتها إلى بساطتها من ناحية التطبيق، وسرعتها في ايجاد النتائج، وقدرتها على 
 تحليل وتجميع البيانات وايجاد النتائج الدقيقة.

، وهي عبارة عن DIMK-meansطلق عليها اسم طروحة خوارزمية جديدة أ  الأ هذهباحث في يقدم ال
، طور فيها الباحث طريقة جديدة لاختيار المراكز الأولية لبدء K-meansخوارزمية تطويرية عن خوارزمية 

ي كانت ، والتعمل الخوارزمية عوضاً عن الطريقة القديمة، وهي طريقة الاختيار العشوائي للمراكز الأولية
خوارزمية غير معقدة وتحتاج إلى وقت مكافئ أو  DIMK-means  تؤول لنتائج سيئة في بعض الأحيان.

ها خوارزمية ل، أضف إلى ذلك أن نتائجها أكثر دقة، و هذا ما يجعK-meansأقل من وقت خوارزمية 
 فعالة من ناحية التطبيق.

تهدف إلى تجاوز التي ، DSMK-meansخوارزمية  بالإضافة إلى ذلك، قدم الباحث في هذه الأطروحة
عند التعامل مع بيانات تحتوي على مجموعات معقدة في شكلها،  K-meansنقاط ضعف خوارزمية 

 لجأ الباحث إلى دمج طرقحيث  ،في الأحجام والكثافة أو تحتوي على ضوضاء وقيم متطرفة مختلفةو 
 ، والتفريق بين المجموعات، للحصول علىالدمجمثل:  وبعض الطرق العملية الأخرى، العنقدةالكثافة في 

تأخذ وقتاً أكبر في التنفيذ والحصول على  DSMK-meansالنتائج الدقيقة في نهاية المطاف. خوارزمية 
تتعامل مع بيانات من المستحيل  حيث؛ K-meansخوارزمية دقيقة أفضل بكثير من نتائج نتائج نهائية 

 دقيقة عند التعامل معها. أن تأتي بنتائج K-meansعلى 
ادرة ق التي طورها الباحثخلصت الدراسة بناءً على مجموعة كبيرة من التجارب إلى أن الخوارزميات وقد 

ن كانت  أكثر من غيرها على اكتشاف المجموعات بشكل دقيق من بين مجموعات البيانات المختلفة؛ حتى وا 
أو تحتوي على نقاط  خطيا مجموعات غير منفصلة حتويتأو معقدة في الشكل ومختلفة في الحجم والكثافة 

 .قيم متطرفةو  ضوضاء
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Enhancing and Combining a Recent 

K-means Family of Algorithms for Better Results 

Raed T. Aldahdooh 

ABSTRACT 

Clustering is widely used to explore and understand large collections of data. K-means 

clustering method is one of the most popular approaches due to its ease of use and 

simplicity to implement. In this thesis, the researcher introduces Distance-based 

Initialization Method for K-means clustering algorithm (DIMK-means) which is 

developed to select carefully a set of centroids that would get high accuracy results 

compared to the random selection of standard K-means clustering method in choosing 

initial centroids, which gets low accuracy results. This initialization method is as fast and 

as simple as the K-means algorithm itself with almost the same low cost, which makes it 

attractive in practice.  

The researcher also Introduces Density-based Split- and -Merge K-means clustering 

Algorithm (DSMK-means) which is developed to address stability problems of K-means 

clustering, and to improve the performance of clustering when dealing with datasets that 

contain clusters with different complex shapes and noise or outliers. 

Based on a set of many experiments, this research concluded that the developed 

algorithms are more capable to finding high accuracy results compared with other 

algorithms especially as they can process datasets containing clusters with different 

shapes, densities, non-linearly separable, or those with outliers and noise. The researcher 

chose the experiments datasets from artificial and real-world examples off the UCI 

Machine Learning Repository. 

 

 

Keywords:  

Clustering, K-Means Algorithm, DIMK-means, Cluster Centroid Initialization, Initializing K-

Means, K-Means Seeding Technique, DSMK-means, Split and Merge K-means, Density Based 

K-means, K-means stability, anti-noise K-mean
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Chapter 1 

1. Introduction 

This Chapter introduces some necessary background where it identifies simple historical 

overview of clustering, then explores some important topics, which are: (1) Cluster 

analysis definition, explanation of its goal and illustration of its difficulty, (2) Definition 

of terms used throughout the thesis, (3) Researcher motives to carry the research. In 

addition, the Chapter discusses the thesis contribution. 

 

1.1   Historical Remark  

Clustering is a discipline aimed at revealing groups, or clusters, of similar entities 

in data. The existence of clustering activities can be traced a hundred years back, in 

different disciplines in different countries. In the mid-18th century, in London during 

cholera outbreak, John Snow had plotted the diseased reported cases using a special map. 

A key observation, after the creation of the map, was the close association between the 

density of disease cases and a single well located at a central street. Without the map; it 

was very difficult to identify the association between the diseased and their locations. 

This was the first known application of clustering analysis for many researchers [1]. 

Since then, cluster analysis consider to be the most popular tool in statistical data 

analysis which is widely applied in a variety of scientific areas such as data mining, 

pattern recognition, geographic information systems, information retrieval, microbiology 

, psychology and other social sciences , in order to identify natural groups in large 

amounts of data [2] [3]. 

1.2   What Cluster Analysis Is? 

Many definitions of clusters exist. In general terms, Cluster analysis is an 

important unsupervised learning technique where a set of patterns usually represented as 

a vector of measurements, or a point in a multidimensional space, is used for identifying 

groups (clusters) of similar characteristics, Literature review reveals researchers interest 

in the development of efficient clustering algorithms in a variety of real-life situations, 
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as indicated by the increase in the number of publications involving this subject in major 

conferences and journals.   

In other terms Morgan Kaufmann define cluster analysis or simply clustering as the 

process of partitioning a set of data objects or observations) into subsets. Each subset is 

a cluster, such that objects in a cluster are similar to one another, yet dissimilar to objects 

in other clusters. The set of clusters resulting from a cluster analysis can be referred to as 

a clustering. In this context, different clustering methods may generate different 

clustering’s on the same dataset. The partitioning is not performed by humans, but by the 

clustering algorithm. Hence, clustering is useful in that it can lead to the discovery of 

previously unknown groups within the data [4]. This definition compared to other 

definition is a general one while the terms segmentation and partitioning are sometimes 

used as synonyms for clustering, these terms are frequently used for approaches outside 

the traditional bounds of cluster analysis. For example, the term partitioning is often used 

in connection with techniques that divide graphs into sub graphs and that are not strongly 

connected to clustering. Segmentation often refers to the division of data into groups 

using simple techniques; e.g,. an image can be split into segments based only on pixel 

intensity and color, or people can be divided into groups based on their income. 

Nonetheless, some work in graph partitioning and in image and market segmentation is 

related to cluster analysis [5].  

The term “clustering” is most popular and used in several research communities to 

describe methods for grouping of unlabeled data. 

1.3   Definitions 

The following terms are used throughout the thesis: 

 Dataset: A dataset is a collection of data, usually presented in tabular form. Each 

column represents a particular (variable, or attribute). Each row corresponds to a 

given member of the dataset called (object, or point). 

 A Cluster: is a well-defined collection of objects, which are “similar” among 

itself and are “dissimilar” to the objects from other clusters. 

 Well-Separated Clusters: Clusters where each object in a cluster is closer 

“similar” to every other object in the same cluster than to any object in other 

clusters. Figure 1.1 show three well-separated clusters of two-dimensional 

objects. 
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Figure 1.1 : Three well-separated clusters of two-dimensional objects. 

 

 Centroid or prototype: A objects in a cluster is called a centroid when it is 

located in the center of the cluster; this point can be identified as the average of 

all the objects in the cluster, or the Medoid, which is the most “representative” 

point of the cluster. 

 Prototype-Based “Center-based” Clusters: A cluster is center-based when its 

objects are closer “more similar” to its “center”, than to the center of any other 

cluster. Figure 1.2 show four centroid-based clusters of two-dimensional objects. 

 

 
Figure 1.2: Four center-based clusters of two-dimensional objects. 

 

 Contiguous Cluster (Nearest neighbor or Transitive Clustering): The cluster 

where its object is closer (or more similar) to one or more other points in the 

cluster than to any point not in the cluster. Contiguous clusters of two-

dimensional objects are shown in Figure 1.3.  

 
Figure 1.3: Eight contiguous clusters of two-dimensional points. 
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 Density-based clusters: A cluster is a dense region of points, which is separated 

by low-density regions, from other regions of high density. Density-based 

clusters of two-dimensional objects are shown in Figure 1.4. 

 
Figure 1.4: Six clusters of two-dimensional points. 

 

 Exclusive (hard or crisp) clustering: each data object can only exist in one 

cluster. 

 Overlapping: allows data objects to be grouped in 2 or more clusters. 

 A Fuzzy clustering: assigns each object to each cluster with a certain degree of 

membership. 

 Complete clustering: assigns every object to a cluster.  

 Partial clustering: allows some data objects to be left alone. 

 Cluster Seed: First centroid of a cluster which is defined as the initiator of that 

cluster. 

 Outlier / Noise: We can identify Outlier as a noisy observation (objects or 

points), which does not fit to the assumed model that generated the data. 

Alternatively, in other definition, outliers are considered as observations that 

should be removed in order to make clustering more reliable.   

 Noisy Dataset: is a dataset whose data records inaccurately represent some is 

meaningless data records. 

 Density area or unit: an area is considered dense or not based on a value defined 

by the number of its neighbor points “MinPts” within a given radius “ε”. Such 

radius and MinPts are calculated dynamically. 

 A distance measure (a specialization of a proximity measure): is a metric (or 

quasi-metric) on the feature space used to quantify the similarity of patterns. 
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 The complete linkage clustering (or the farthest neighbor method): is a 

method of calculating and finding maximum distance between a pair of objects 

one in one cluster, and one in the other. 

 The single linkage clustering (nearest neighbor or shortest distance): is a 

method of calculating and finding minimum distance between a pair of objects 

one in one cluster, and one in the other “closest objects”. 

 Data Types and Scales: The attributes of the objects can be of different data 

types and can be measured on different data scales. Data scales and types are 

important since the type of clustering used often depends on the data scale and 

type. 

o The different types of attributes are 

i. Binary (two values) 

ii. Discrete (a finite number of values) 

iii. Continuous (an effectively infinite number of values) 

o The different data scales are 

i. Qualitative 

(1) Nominal – the values are just different names. 

(2) Ordinal – the values reflect an ordering, nothing more. 

ii. Quantitative 

(3) Interval – the difference between values is meaningful, i.e., a unit 

of measurement exits. 

(4) Ratio – the scale has an absolute zero so that ratios are 

meaningful. 

 

1.4   Research Questions 

The research questions addressed in this thesis include: 

1. Could we improve recent K-means analysis by making it less sensitive to noise, 

cluster shape, and data size? 

2.  How can we improve recent K-means algorithms initialization process, which 

has big impact on algorithms results? 

3. Does the initialization process need to use parameters? Can we make 

algorithms determine the parameters depending on the nature of data? 
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1.5   Motivation 

Data analysis underlies many computing applications, either in a design phase or 

as part of their on-line operations. Data analysis procedures can be dichotomized as either 

exploratory or confirmatory, based on the availability of appropriate models for the data 

source, but a key element in both types of procedures (whether for hypothesis formation 

or decision-making) is the grouping, or classification of measurements based on either 

(i) goodness-of-fit to a postulated model, or (ii) Natural groupings (clustering) revealed 

through analysis [6].   

Clustering is useful in several exploratory pattern-analysis, grouping, decision- making, 

and machine-learning situations; including data mining, document retrieval, image 

segmentation, and pattern classification. It is the process of producing unlabeled 

categorized data. However, On trajectory data clustering is a very important data mining 

task for a wide variety of application fields including location aware services, geo-

marketing protein analysis etc. Most of traffic planner or Geo-marketer takes interest to 

know the most visited place or important place with respect to product promotion; based 

on this, clustering is very useful in various applications [7].  

K-means is one of the most famous partition clustering algorithms because of: (i) It has 

been recently elected and listed among the top ten most influential data mining 

algorithms; (ii) it is at the same time very simple and slightly scalable, as it has linear 

asymptotic running time with respect to any variable of the problem. K-means clustering 

is a method of cluster analysis, which aims to partition n observations (x1, x2… xn), where 

each observation is a d-dimensional real vector into k clusters in which each observation 

belongs to the cluster with the nearest mean. In general, K-means is one of the most 

important and best performances of the clustering algorithms. However, there are some 

drawbacks for K-means algorithm like sensitivity to the initial cluster centroids, which 

is addressed in these references [8] [9]. Moreover, when the number of data points is 

large, it takes enormous time to find the global optimal solution [10].  

K-means has several limitations which are listed below : 

 Scalability: It scales poorly computationally. 

 Initial Centroids: The clustering result is extremely sensitive to the initial 

centroids. 

 Noise: Noise or outliers deteriorates the quality of the clustering result. 
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 Number of clusters: The number of clusters must be determined before the 

means clustering begins. 

 Local minima: It always converges to different local minima based on the 

initializations process. 

 Inability to cluster non-linearly separable dataset: It fails to split non-

linearly separable datasets in the input space. 

It is very convenient to classify algorithms based on the relative amount of time or 

relative amount of space they require and specify the growth of time/space requirements 

as a function of the input size. Thus, The K-means time complexity is O(NKI), (where N 

is number of objects, K is the number of clusters , and I is the number of iteration taken 

by the algorithm until convergence criterion is satisfied) And its space complexity is 

O(K+N), as it requires additional space to store the data matrix. Add to that K-means 

order-independent; for a given initial seed set of cluster centers, it generates the same 

partition of the data irrespective of order in which pattern are presented to the algorithm. 

Because of these characteristics, K-means algorithm is considered as one of the top ten 

most influential data mining algorithms, which is one reason that encouraged the 

researcher to choose K-means clustering to be the focus of this thesis.  

There are a large number of researchers up to this moment try to develop and enhance 

K-means algorithm to optimize the performance and overcome algorithm drawbacks. 

These reasons and others prompted the researcher to choose this algorithm. However, the 

researcher aims at improving the performance of this algorithm by creating new 

initialization process “seeding process”, which will contribute to overcome the initial 

centroid sensitivity drawback. Moreover, the researcher will combine some of the recent 

K-means family of algorithms to optimize the algorithm results and preserve its stability 

in addition to reduce its sensitivity towards noise.  

 

1.6   Thesis Contribution 

This thesis contributes to the area of pure experimental computer science; 

specifically, it introduces novel thinking and techniques to the fields of partition based 

clustering techniques.  The primary objective of this thesis is to optimize the performance 

of K-means clustering algorithm, which is considered as one of the top ten partition based 

clustering algorithms in data mining. 

The contribution of this thesis is two-fold:  
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(1) The researcher will develop a new clustering algorithm called DIMK-means 

“Distance-based initialization method for K-means clustering algorithm” that 

will be developed to address sensitivity of the algorithm for selecting initial 

means “careful seeding”, and reducing the effect of outliers or noise. 

(2) Also the researcher will develop another clustering algorithm called DSMK-

means “Density-based Split-and-Merge K-means clustering Algorithm” that will 

be developed to address stability of K-means clustering problems, and to decrease 

deterioration of the clustering results quality because of cluster shape, size, noise 

or outliers. 

The researcher will evaluate the proposed algorithms using real and artificial data and 

compare algorithms’ results with other famous related algorithms’ results. It is expected 

that the results of the proposed algorithms will confirm the high performance of the 

proposed methods in both quality and time. 

 

1.7   Organization of The Thesis 

This thesis has five chapters, which will give an overview of the thesis where 

relevant, the researcher highlights the major issues addressed in the chapters, and what 

researcher regards as the key contributions of the work; the following is a brief 

description of the content of each chapter: 

Following on from this introduction, Chapter 2 reviews the related work, which 

discusses the clustering problems and background. The Chapter includes also a 

description of standard K-means algorithm, highlights the effects of random selection for 

initial cluster centroids, and the effects of different cluster shapes and noise or outlier on 

the quality of algorithm results. 

Chapter 3 overviews and discusses the new proposed algorithms. Furthermore, it 

describes some of the most important terms related to the proposed algorithms. A 

summary of the research methodology and design are provided in this chapter. 

Chapter 4 illustrates the experiment, its results and the analysis of these results. In 

addition, the Chapter explains the means of measuring the algorithm results’ quality and 

presents a comparison with other algorithms’ results. 

Chapter 5 This final Chapter discusses a general summary and offers conclusions of the 

thesis in addition to proposed future 
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Chapter 2 

2. Literature Review 

This Chapter presents necessary background and related work. First, it identifies simple 

background overview. Then explores some important topics: (1) requirements for cluster 

analysis (scalability, discovery of clusters with arbitrary shape, ability to deal with noisy 

data, etc…), (2) defines a categorization of major clustering methods, (3) K-means 

algorithm, finally, it discusses related work, which is divided into two main research [i]. 

Research that addresses K-means initialization methods and [ii]. Research that 

addresses K-means stability in results and sensitivity to outliers 

 

2.1     Background 

The main goal of clustering is to reduce the amount of data by categorizing or 

grouping similar data items based on an underlying measure of similarity. Such grouping 

is pervasive in the way human’s process information, and one of the motivations for 

using clustering algorithms is to provide automated tools to help in constructing 

categories or taxonomies. These methods may also be used to minimize the effects of 

human factors in the process [11]. The cluster Analysis has been used for the following 

three main purposes [12]. 

 Underlying structure: to gain insight into data, generate hypotheses, detect 

anomalies, and identify salient features. 

 Natural classification: to identify the degree of similarity among forms or 

organisms (phylogenetic relationship). 

 Compression: as a method for organizing the data and summarizing it through 

cluster prototypes. 

Clustering is a difficult problem and in order to better understand the difficulty of 

deciding what constitutes a cluster, consider Figures  2.1.(a) through 2.1.(d), which show 

twenty points and three different ways in which these points can be divided into clusters. 

If we allow clusters to be nested, then the most reasonable interpretation of the structure 
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of these points is that they can be divided into two clusters, each of which has three sub 

clusters. However, the apparent division of the two larger clusters into three sub clusters 

may simply be an artifact of the human visual system, but it may be reasonable also to 

say that the points form four clusters. Thus, we stress once again that the definition of 

what constitutes a cluster is imprecise, and the best definition depends on the type of data 

and the desired results [13]. 

 
Figure 2.1: Different ways to clustering the same set of points [13]. 

 

2.1.1 Requirements for Cluster Analysis 

Clustering is a challenging field of research in which its potential applications 

pose their own special requirements. Although many researchers defined the 

requirements for clustering, Han & Kamber have the most suitable definition of the 

requirements that are listed below [4]: 

1. Scalability: Many clustering algorithms work well on small datasets containing 

fewer than 200 data objects. However, a large database may contain millions of 

objects. Clustering on a sample of a given large dataset may lead to biased results. 

Highly scalable clustering algorithms are needed. 

2. Ability to deal with different types of attributed: Many algorithms are 

designed to cluster interval-based (numerical) data. However, applications may 

require clustering other types of data, such as binary, categorical (nominal), and 

ordinal data, or mixtures of these data types. 

3. Discovery of clusters with arbitrary shape: Many clustering algorithms 

determined clusters based on Euclidean or Manhattan distance measures. 

Algorithms based on such distance measures ‘end to find spherical clusters with 

similar size and density’. However, a cluster could be of any shape. It is important 

to develop algorithms that can detect clusters of arbitrary shape. 
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4. Minimal requirements for domain knowledge of determine input 

parameters:  Many clustering algorithms require users to input certain 

parameters in cluster analysis (such as the number of desired clusters). The 

clustering results can be quite sensitive to input parameters. Parameters are often 

hard to determine, especially for datasets containing high-dimensional objects. 

This not only burdens users, but also makes the quality of clustering difficult to 

control. 

5.  Ability to deal with noisy data: Most real-world databases contain outliners or 

missing, unknown, erroneous data. Some clustering algorithms are sensitive to 

such data and may lead to clusters of poor quality. 

6.  Insensitivity to the order of input records: Some clustering algorithms are 

sensitive to the order of input data; for example, may generated dramatically 

different clusters. It is important to develop algorithms that are insensitive to the 

order of input. 

7.  High dimensionality: A database or a data warehouse can contain several 

dimensions or attributes. Many clustering algorithms are good at handling low-

dimensional data, involving only two to three dimensions. Human eyes are good 

at judging the quality of clustering for up to three dimensions. It is challenging to 

cluster data objects in high-dimensional space, especially considering that such 

data can be very sparse and highly skewed. 

8. Constraint-based clustering: Real-world applications may need to perform 

clustering under various kinds of constraints. Suppose that your job is to choose 

the locations for a given number of new automatic cash-dispensing machines 

(ATMs) in a city. To decide upon this, we may cluster household while 

considering constraints such as the city’s rivers and highway networks and 

customer requirements per region. A challenging task is to find groups of data 

with good clustering behavior that satisfy specified constraints. 

9. Interpretability and usability: Users expect clustering results to be 

interpretable, comprehensible, and usable. That is, clustering may need to be tied 

up with specific semantic interpretations and applications. It is important to study 

how an applications goal may influence the selection of clustering methods. 
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2.1.2 A Categorization of Major Clustering Methods 

To satisfy the requirements of clustering; different clustering methods have been 

developed, each of which uses a different induction principles, and gives different 

grouping of a dataset. Deciding which the most suitable method is depends on the type 

of the output desired, the known performance of a certain method with particular types 

of data, the hardware and software facilities available, and the size of the dataset. In 

general; clustering methods have different categorization, Farley and Raftery (1998) 

suggest dividing the clustering methods into two main groups: hierarchical and 

partitioning methods. Han and Kamber (2001) suggest categorizing the methods into 

additional three main categories: density-based clustering, model-based clustering and 

grid-based clustering. An alternative categorization method based on the induction 

principles of the various clustering methods is presented in (Estivill-Castro, 2000) [14]. 

Several studies examine a lot of clustering techniques, of which the researcher found 

most efficient categorization techniques are those organized into the following 

categories: partitioning, hierarchical, grid-based, density-based, model-based, methods 

for high-dimensional data, and constraint-based clustering techniques. 

 

 Partition-based clustering attempts to directly decompose the dataset into a set of 

disjoint clusters. The criterion function that the clustering algorithm tries to minimize 

may emphasize the local structure of the data, as by assigning clusters to peaks in the 

probability density function, or the global structure. Typically, the global criteria 

involve minimizing some measure of dissimilarity in the samples within each cluster, 

while maximizing the dissimilarity of different clusters. Cluster similarity is 

measured in regard to the mean value of the objects in a cluster, center of gravity, (K-

means [15]) or each cluster is represented by one of the cluster objects located near 

its center (K-Medoid [16]). The most popular and the simplest partitional algorithm 

is K-means. Since partitional algorithms are preferred in pattern recognition due to 

the nature of available data, our coverage here is focused on these algorithms. K-

means has a rich and diverse history as it was independently discovered in different 

scientific fields. Even though K-means was first proposed over 50 years ago, it is still 

one of the most widely used algorithms for clustering. Ease of implementation, 

simplicity, efficiency, and empirical success are the main reasons for its popularity 

[12].  
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 Hierarchical clustering algorithms recursively find nested clusters either in agglomerative 

mode (starting with each data point in its own cluster and merging the most similar pair of 

clusters successively to form a cluster hierarchy) or in divisive (top-down) mode (starting 

with all the data points in one cluster and recursively dividing each cluster into smaller 

clusters), agglomerative mode vs. divisive mode are described in Figure 3.3  [12]. In other 

terms, hierarchical clustering proceeds successively either by merging smaller clusters into 

larger ones or by splitting larger clusters. The clustering methods differ in the rule by which 

it decides which two small clusters are merged or which large clusters are split. The end 

result of the algorithm is a tree of clusters called a dendrogram, which shows how the clusters 

are related. By cutting the dendrogram at a desired level; a clustering of data items into 

disjoint groups is obtained; Hierarchical algorithms such as BIRCH [17] and CURE [18]. 

 

 
Figure 2.2: Agglomerative and divisive clustering 

 

 Grid-based clustering methods make it possible to form arbitrarily shaped, distance 

independent clusters. In these methods, the feature space is quantized into cells using 

a grid structure. The cells can be merged together to form clusters. Grid-based 

clustering was originally based on the idea of Warnekar and Krishna to organize the 

feature space containing patterns [19]. Schikuta has used topological neighbor search 

algorithm to combine the grid cells to form clusters [20]. CLIQUE [21], named for 

Clustering In Quest, is a density and grid-based approach for high dimensional 

datasets that provides, automatic sub-space clustering of high dimensional data. Grid-

based algorithms such as STING [22], and WaveCluster [23], are based on multi-

level grid structure on which all clustering operations are performed. 
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 In Density-based clustering [24], clusters are defined as areas of higher density than the 

remainder of the dataset. The most popular density based clustering method is DBSCAN 

[25]. In contrast to many newer methods, it features a well-defined cluster model called 

"density-reachability". Similar to linkage based clustering; it is based on connecting points 

within certain distance thresholds. However, it only connects points that satisfy a density 

criterion, in the original variant defined as a minimum number of other objects within this 

radius. A cluster consists of all density-connected objects (which can form a cluster of an 

arbitrary shape, in contrast to many other methods) plus all objects that are within these 

objects' range. OPTICS [26] is a generalization of DBSCAN that removes the need to choose 

an appropriate value for the range parameter a, and produces a hierarchical result related to 

that of linkage clustering. 

 A model-based method hypothesizes a model for each of the clusters and finds the 

best fit of the data to that model. Examples of model-based clustering include the EM 

algorithm (which uses a mixture density model), conceptual clustering (such as 

COBWEB [27]) and neural network approaches (such as self-organizing feature 

maps). 

 Clustering high-dimensional data is of crucial importance, because in many 

advanced applications; data objects such as text documents and microarray data are 

high-dimensional in nature. There are three typical methods to handle high 

dimensional datasets: dimension-growth subspace clustering represented by 

CLIQUE [20], dimension reduction projected clustering, represented by PROCLUS, 

and frequent pattern–based clustering, represented by pCluster. 

 A constraint-based clustering method groups objects based on application 

dependent or user-specified constraints. For example, clustering with the existence 

of obstacle objects and clustering under user-specified constraints are typical 

methods of constraint-based clustering.  

 

2.1.3 Partition Based Clustering: 

A partition clustering  algorithm  splits  the  data  points  into  k  partitions,  where  

each  partition  represents  a cluster.  The partitioning is done based on certain objective 

function.  One of the criterion functions is minimizing square error criterion, which is 

computed as shown by equation 2.1: 

http://en.wikipedia.org/wiki/DBSCAN
http://en.wikipedia.org/wiki/OPTICS_algorithm
http://en.wikipedia.org/wiki/Hierarchical_clustering
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𝐄 = ∑ ∑ ||𝑷𝒊 − 𝛍𝐊||
𝟐

 

∀ 𝑷𝒊 ∈𝑪𝑲

𝑲

𝑲=𝟏

 

Where CK is the set of instances in cluster K; 𝜇𝐾 is the prototype of cluster k. 

Each K cluster must have at least one point and each point must be in one and only one 

cluster. 

 

2.1.4 K-Means Algorithm 

K-means is one of the most widely used partition-based clustering algorithms in 

practice. It is simple, easy, understandable, scalable, and can be adapted to deal with 

streaming data and very large datasets [28]. K-means algorithm divides a dataset X into 

K disjoint clusters based on the dissimilarities between data objects and cluster centroids. 

Let μi̅ be the centroid of cluster Ci and the distances between Xj that belong to Ci and μi̅ 

is equal to d(Xj, μi̅). Then, the objective function minimized by K-means is given by:  

𝐦𝐢𝐧
𝛍𝟏̅̅̅̅ ,..,𝛍𝐤̅̅̅̅

𝐄 = ∑ ∑ 𝐝(𝐱𝐣, 𝛍�̅�)

𝐱𝐣∈𝐂𝐢

𝐊

𝐢=𝟏

 

Where‘d’ is one of distance function. Typically d is chosen as the  

Euclidean or Manhattan distance. 

 

The Euclidean distance between points X and Y is the length of the line segment 

connecting them ( X Y̅̅ ̅̅  ). If X and Y are n-dimensional vectors where X= (x1, x2,..., xn) 

and Y = (y1, y2,..., yn), then the Euclidean distance from X to Y, or from Y to X is given 

by: 

{
d(X, Y)

d(Y, X)
} = √∑(xi − yi)

2

n

i=1

 

The Manhattan distance between two points measured along axes at right angles where 

distance that would be traveled to get from one data point to the other if a grid-like path 

is followed. In a plane with X at (x1, x2) and Y at (y2, y2), it is |x1 - y1| + | x2 – y2|. The 

Manhattan distance between two n-dimensional vectors is the sum of the differences of 

their corresponding components. 

(2.3) 

 

(2.2) 

 

(2.1) 

 

http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Cartesian_coordinates
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d(X, Y) = ∑|xi − yi|

n

i=1

 

Where n is the number of variables, and Xi and Yi are the values of the ith variable, at 

points X and Y respectively. 

 

Usually the selection process between the two methods of calculating the distance is left 

to the user based on the nature of the data. Figure 7 shows the difference between using 

Euclidean and Manhattan distance to calculating the distance between two points in two-

dimensional space. 

 

 
Figure 2.3: Euclidean and Manhattan distance between two point in tow-dimensional space. 

 

K-means algorithm working process summarized as follows:  

1. Determine the number of clusters (k parameters in k-means). 

2. K-means selects randomly k cluster centroids. 

3. Assign object to clusters based on distance function. 

4. When all objects have been assigned, Re-compute new cluster centroids by 

averaging the observations assigned to a cluster. 

5. Repeat (3-4) until convergence criterion is satisfied. 

 

Pseudo code for K-means algorithm:  

 

 

Algorithm 2.1: K-means  

Input:    X={x1,x2,…,xj} (set of entities to be clustered) 

    K (number of cluster) 

    MaxIters (Limit of iterations) 

 

Manhattan distance Euclidean distance 

(2.4) 
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Output:    C= {𝜇1̅̅ ̅, 𝜇2̅̅ ̅,.., 𝜇𝑘̅̅ ̅} (set of cluster centroids) 

       L= (set of cluster labels of X) 

 

 

1. Require: k ≥ 2 and t ≥ 1 {
𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟,             
𝑡: 𝑚𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.

 

2. Select initial cluster centroids 𝜇1̅̅ ̅, 𝜇2̅̅ ̅,.., 𝜇𝑘̅̅ ̅. 

3. Repeat 

4. For each point xj in a dataset do 

5. For all 𝜇�̅� do 

6. Compute the dissimilarity  𝑑(𝑥𝑗 , 𝜇�̅�); 

7. End for. 

8. assign point xj to closest cluster Ci; 

9. End for. 

10. For all 𝜇�̅� do 

11. Update  𝜇�̅�  as the centroid of cluster Ci; 

12. End for. 

13. Until convergence criterion is satisfied or the number of iterations exceeds 

a given limit t. 

 

 

 

The number of clusters found is equal to the number of the initial starting points, which 

are specified as input parameters to the clustering algorithm. 

 

2.2      Related Work 

K-means clustering algorithm has a very rich history because of its observed 

speed and simplicity, in this work the focus is on improving its accuracy. In the following 

sub sections, the researchers reviews initialization methods in K-means algorithm in 

addition to different research studies that were developed to enhance K-means accuracy. 

 

2.2.1 K-Means Initialization Methods 

The initial location of the cluster centroid has major impact on the performance 

of K-means algorithm. These effects will be discussed in the following sub section. The 
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following are some methods proposed by different researchers that decrease the 

sensitivity and increase accuracy of K-means, through selection of the best centroid 

locations within the existing dataset. 

 K-means++: the advantages of careful seeding [29]: 

In 2007; David Arthur and Sergei published research titled “K-means++: The 

Advantages of Careful Seeding” where they proposed a specific way of choosing initial 

centroids. In their proposed method, initial centroids are chosen consecutively with 

probability proportional to the distance to the nearest centroid as follows: 

1. Choose an initial centroid c1 =x randomly from X. 

2. Set D(x) as the shortest Euclidean distance from a data point x to the closest 

centroid. 

3. Choose the next centroid ci, selecting ci = x′ ϵ X with probability 
D(x′)

2

∑ D(x)2  

4. Repeat steps 2 and 3 until we have chosen a total of K centroids.  

5. Proceed as with the standard K-means algorithm. 

This seeding method yields considerable improvement in the final error of k-means. 

Although the initial selection in the algorithm takes extra time, The authors tested their 

method with real and synthetic datasets and obtained typically 2-fold improvements in 

speed, and for certain datasets, close to 1000-fold improvements in error. In these 

simulations, the new method usually performed at least as well as standards k-means in 

both speed and error. In summary K-means++ presented a new way to seed the K-means 

algorithm that is O(logk) competitive with the optimal clustering. Where the initialization 

needs k passes over the data, which make it does not scale very well to large data sets. 

 Initializing partition-optimization algorithms [30]: 

Initializing Partition-Optimization Algorithms proposes a staged approach to specifying 

initial values by finding a large number of local modes and then obtaining representatives 

from the most separated ones. The researcher propose Amulti-Stage Initializer; the steps 

of algorithm are outline below: 

Let X be the n × p data matrix with rows given by the observations X = {X1,X2 ,...,Xn}. 

the algorithm objective is to find initial seeds for partitioning algorithms to group the 

dataset into K clusters, assuming that K is known. Consider the following multi-stage 

algorithm: 
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1. Obtain the singular value decomposition (SVD) of the centered data X*=U DV', 

where D is the diagonal matrix of the m positive singular values d1 ≥ d2 ≥ …≥ 

dm, and U and V matrices of order n × m and p × m, both with orthonormal 

columns (in n-and p dimensional space, respectively). For a given m* consider 

the reduced n × m* projection given by U* consisting of the first m* columns of 

U given by u1 , u2 , …. , um*  . We propose working in the reduced space. 

2. For each coordinate in the reduced space, we obtain an appropriate number of 

local modes. We choose more modes in those coordinates with higher singular 

values (or standard deviations of the principal components), under the 

assumption that information in the dataset is more concentrated along those 

projections corresponding to higher values, and therefore these would contain 

more information about the clusters. Specifically, we propose choosing the 

number of modes, kj in the jth reduced-space coordinate to be equal to 

⌈(𝑐𝑚−𝑚∗ 𝐾)
1

𝑚∗⁄ ⌉ 𝑑𝑗 𝑑𝑚∗⁄   rounded to the nearest integer, with ⌈𝑥⌉denoting the 

smallest integer greater than or equal to x, and ck is non-decreasing and concave 

in k. They propose one-dimensional k-means to determine the modes in the jth 

reduced coordinate data space initialized using the quintiles corresponding to the 

kj equal increments in probabilities in (0,1). The choice of k-means is appropriate 

because the goal here is to find a large number of univariate local modes for 

input into the next step. 

3. Form the set of candidate multivariate local modes in the reduced space by 

taking the product set of all the one-dimensional modes. Eliminate all those 

candidates from the product set which are not closest to any observation in U∗. 

The remaining k∗ modes are used as initial points for a K-means algorithm that 

provides us with k∗ local modes. Note that typically, k∗>> k. 

4. Obtain the k∗ local modes of the dataset using the K-means algorithm with the 

starting points provided from above. Also, classify the observations, and obtain 

the corresponding group means in the original domain.  

5. At this point, we have k∗ local modes of the dataset in the reduced space and the 

corresponding group centers in the original space. The goal is to obtain k 

representative points from the above, which are as far as possible from each 

other. We use hierarchical clustering with single-linkage on these k∗ modes and 

cut the tree into k groups. Since a single-linkage merge criterion combines 
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groups based on the least minimum pairwise distance between its members, its 

choice in the hierarchical clustering algorithm here means that we obtain k 

groups of local modes (from out of k∗) that are as far apart in the transformed 

space as possible. Means, and if needed, relative frequencies and dispersions, of 

the observations in the dataset assigned to each of the k grouped modes are 

calculated: these provide the necessary initialization points for the partition-

optimization algorithms. 

The main contribution of this research is the development of a computationally feasible 

deterministic algorithm for initializing greedy partition-optimization algorithms. The 

results on an extensive suite of test experiments and a classification dataset are very 

promising. Where, the computation complexity is high. 

 

 Cluster Center Initialization Method for K -means Algorithm Over Datasets 

with Two Clusters [31]: 

Cluster Center Initialization Method for K-means Algorithm Over Datasets with Two 

Clusters defines nearest neighbor pair and puts forward four assumptions about nearest 

neighbor pairs, based on which a centroid initialization method for K-means algorithm 

over datasets with two clusters is build. The steps of research are outlined below: 

Supposing that X={x1,x2,...,xn} is a dataset, where xj={x1j,x2j,...,xmj}T . 

1. Compute the dissimilarity between any pair of data points in X using formula: 

d(xj, xk) = √(xj − xk)
T

(xj − xk) 

2. For any datum point x in X find its nearest neighbor xNN using formulae: 

xNN = arg minyϵ X−{x}{d(x, y)} and constitute a set B of nearest neighbor 

pairs 

 

 

 

 

 

 

3. Find two most dissimilar nearest neighbor pairs, (x1, x1,NN) and ( x2, x2,NN), 

using formulas: 
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d = ((x, xNN), (y, yNN)) 

d = min {d(a, b)|a ∈  {x, xNN}, b ∈  {y, yNN}} 

d′ = ((x1, x1,NN), (x2, x2,NN)) 

d′ = max {d((x, xNN), (y, yNN))|(x, xNN) ∈ B, (y, yNN) ∈ B} 

4. Find the third most dissimilar nearest neighbor pairs (x3, x3,NN).     

5. Find the fourth most dissimilar nearest neighbor pairs (x4, x4,NN). 

6. Find the nearest neighbor pair (x5, x5,NN) on the overlapping of two clusters.. 

7. Select two initial cluster centroids according to some assumptions. 

Cluster center initialization method CIT devotes to searching two nearest neighbor pairs 

that are most dissimilar and in different clusters, but not on the overlapping of two 

clusters. The means of each searched nearest neighbor pairs are selected as two initial 

cluster centers. 

 Hierarchical K-means: an algorithm for centroids initialization of K-means [32]: 

Hierarchical K-means: an algorithm for centroids initialization for K-means, a new 

approach to optimize the initial centroids for K-means proposed. It utilizes all the 

clustering results of K-means in certain times, even though some of them reach the local 

optima. Then, transform the result by combining with Hierarchical algorithm in order to 

determine the initial centroids for K-means. The execution steps of the proposed 

Hierarchical K-means algorithm to determine initial centroids for K-means are described 

as follows:  

1. Set X={xi | i=1,….,r}  as each data of  A,  where  A={ai |,i=1,...,n} is attribute 

of  n-dimensional vector. 

2. Set K as the predefined number of clusters.  

3. Determine p  as numbers of computation  

4. Set i=1 as initial counter  

5. Apply K-means algorithm.  

6. Record the centroids of  clustering results as Ci= {cij |  j=1,…,K}  

7. Increment i=i+1  

8. Repeat from step 5 while i<p.  

9. Assume C = { Ci|  i=1,…,p} as new dataset, with K as predefined number of 

clusters 

10. Apply hierarchical algorithm 
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11. Record the centroids of clustering result as D  = {di |  i=1,…,K}  

Then, apply D = {di | i=1… K} as initial cluster centroids for K-means clustering. The 

experiment results reflect the accuracy of the method. 

 Efficiency issues of evolutionaryK-means [33]: 

Efficiency issues of evolutionary K-means method suggest that evolutionary techniques 

conceived to guide the application of K-means can be more computationally efficient 

than systematic (i.e., repetitive) approaches that try to get around the K-means drawbacks 

by repeatedly running the algorithm from different configurations for the number of 

clusters and initial positions of prototypes. To do so, a modified version of a (K-means-

based) fast evolutionary algorithm for clustering is employed. From the theoretical 

perspective, the time complexity of all the assessed algorithms has been demonstrated to 

be linear with respect to the number of data objects and attributes. This method suggests 

that, in principle, all of them are eligible to be employed in real world applications 

involving large datasets. Furthermore, this method has shown that well-designed 

evolutionary algorithms for clustering are also promising tools for real-world practical 

applications in which computational efficiency is of paramount importance.  

 

 A Deterministic Method for Initializing K-means Clustering [34]: 

A Deterministic Method for Initializing K-means Clustering by Ting Su and Jennifer Dy 

motivate theoretically and experimentally the use of a deterministic divisive hierarchical 

method, which they refer to as PCA-Part (Principal Components Analysis Partitioning) 

for initialization. The researchers proposed sorting data instances on a single variable 

then performed the initial partition. These partitions are used only in one dimension. An 

alternative method is to partition the sample space hierarchically. Starting with one 

cluster, then cut it into two. Pick the next cluster to partition, and so on. PCA-Part uses 

the latter approach. The performance of K-means depends on the initial condition. 

According to researchers, results are encouraging. It presents some promise in initializing 

at intelligent starting points for the K-means algorithm, instead of just random start.  

 

 Minkowski metric, feature weighting and anomalous cluster initializing in K-

means clustering [35]: 
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A Minkowski metric, feature weighting and anomalous cluster initializing in K-means 

clustering by Renato Cordeiro de Amorim and Boris Mirkin represents another step in 

overcoming a drawback of K-Means, its lack of defense against noisy features, using 

feature weights in the criterion. In this criterion, two modifications of weighted method 

are proposed and their competitiveness is experimentally demonstrated. The main 

contribution of this research is the extension of the exponent β from the weights in the 

original Weighted K-means method to the distances, in the form of Minkowski metric 

criterion. This returns the K-means criterion to its original format of summary distances 

between entities and their cluster centroids and makes the weights to be the feature 

rescaling coefficients. The Minkowski metric criterion does the job: in the experiments, 

it consistently improves the accuracy of the Weighted K-means both at the original and 

noisy datasets. The issue remaining to be addressed in this regard, as it is with the original 

Weighted K-Means, is of determining the right value of β exponent. Applying a semi-

supervised setting by training β on labeled subsamples appears to be a promising 

direction. Another possibility would lie in trying to identify characteristics of the data 

structures that relate to specific values of β. Furthermore, a related contribution of this 

paper is the usage of anomalous cluster centers to initialize both centroids and feature 

weights in the ‘‘intelligent’’ versions of the Weighted K-Means. This proved effective at 

modest to moderate data sizes. 

 

By the end of this subsection, the researcher criticizes most of the researches mentioned 

above, where many of these algorithms proposed to solve the sensitivity of K-means to 

centroids initialization process that has a direct impact on the formation of final clusters. 

Most of the algorithms mentioned above suffer from high computational complexity; 

therefore, they do not have strong scalability. This has led the researcher attempt to 

develop a new simple and scalable algorithm to decrease the sensitivity of centroids 

initialization process. 

 

2.2.2 K-Means Stability in Results and Sensitivity to Outliers 

This sub section is mainly concerned with presenting the algorithms that enhance 

and improve the performance of K-means. We will review methods that decrease the 

sensitivity of algorithm towards outlier or noise, and other related methods. 
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 BNAK-Divide-and-Merge Clustering Algorithm [36]: 

Divide-and-Merge is a methodology for clustering a set of objects that combines a top-

down “divide” method with a bottom-up “merge” method. This algorithm proposes a 

normalized cut with automatically determining K clustering algorithm (BNAK-Divide-

and-Merge) based on the Divide-and-Merge. Like the Divide-and-Merge, there are also 

two phases in this approach.  

i. Divide phase: 

Which is the first phase of Divide-and-Merge Algorithm, applies the spectral clustering 

algorithm to form a tree T whose leaves are the objects. A new threshold is proposed and 

called minDividedSize in Step 1 to control the number of tree nodes produced by the 

divide phase, which can greatly improve the efficiency of the divide phase. In Step 2, D 

is the diagonal matrix of the row sums of similarity matrix A•AT. 

 

Pseudo code for dividing phase: 

Input: An  m n× matrix A and a threshold minDividedSize  

Output: A tree whose leaves are subsets of the objects 

 

1. If the size of A is not less than minDividedSize, then go to step 2, else stop. 

2. Compute the Laplacian matrix L=D-A•AT.  

3. Compute the two smallest eigenvectors  V1 and V1 of D-1 L, let V={y1,y2,..,yn}
T 

where V={v1,v2} 

4. Partition the samples  y1,y2,..,yn  by K-means which k=2.  

5. Let As,AT be the submatrices of A. Recurse  (Step 1-4) on As and AT. 

 

ii. Merge phase 

For a large class of natural objective functions proposed by the merge phase can be 

executed optimally when the expected number of clusters (i.e. K) is specified at first. 

Alternately, they use the most obvious turning point of K-TSS curve to automatically 

determine the value of K . Many inner measurements of the clusters effectiveness are 

based on the conception of cohesion and separation. Cluster cohesion (i.e. SSE) is the 

sum of the weight of all links within a cluster. Cluster separation (i.e. SSB) is the sum of 

the weights between nodes in the cluster and nodes outside the cluster. In some cases, 

there is a strong connection between the cohesion and the separation. Specifically, the 

sum of SSE and SSB is equal to total sum of squares TSS. TSS is defined as follows: 
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TSS=SSE+SSB. They observing that most obvious turning point of the K-TSS curve can 

help us determine the expected number of clusters. 

 

This concludes that K-Divide-and-Merge clustering algorithm (BNAK-Divide-and-

Merge) based on the Divide-and-Merge, improves the efficiency and performance of the 

clustering. 

 

 A Modified K-means Algorithm for Noise Reduction in Optical Motion Capture 

Data [37]: 

A modification to K-means algorithm has been used for removing noise in multicolor 

motion capture image sequences. The proposed algorithm takes into account the nature 

of the motion capture images in terms of the number of data pixels normally clustered 

together and the acceptable degree of compactness of a data cluster.  The modified K-

means algorithm is used to clean up the noise embedded in the color regions in each 

image by creating clusters of pixels based on their relative spatial positions in the image. 

Following the classical K-means algorithm, the Euclidean Distance measure is used to 

determine which cluster a pixel belongs to. Each pixel is put into a cluster, which yields 

the minimum Euclidean Distance between the pixel and the respective centroid. The 

centroid of each cluster is changed iteratively by calculating its new coordinate as the 

average of the sum of the coordinates of the pixels in the cluster until it converges to a 

stable coordinate with a stable set of member pixels in the cluster. In each iteration, the 

memberships of each cluster keep changing depending on the result of the Euclidean 

Distance calculation of each pixel against the new centroid coordinates. 

Classical K-means algorithm is modified upon the form of constraints on cluster size and 

cluster compactness. The value for the cluster size constraint is set just above the number 

of data points usually found in a noise cluster for the type of data at hand. The value for 

the cluster compactness constraint is set just below the minimum compactness of valid 

data clusters. 

 

 Automatic Cluster Number Selection using a Split and Merge K-means 

Approach [38]: 

This research address the problem of cluster number selection by using a K-means 

approach that exploits local changes of internal validity indices to split or merge clusters. 
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There split and merge K-means issues criterion functions to select clusters to be split or 

merged and fitness assessments on cluster structure changes. 

Assume a set of data samples X ={x1,…,xN} is given, C={c1,…,ck} being the cluster 

centroid, the optimization criterion in the research is given as  𝐿 = ∑ 𝑥𝑖
𝑇𝑐𝑦𝑖

𝑁
𝑖=1  where 

𝑦𝑖 = 𝑎𝑟𝑔 max
1≤𝑘≤𝐾

𝑥𝑖
𝑇𝑐𝑘 the hard assignment of samples to cluster is denoted as set 

y={y1,…,yN} 

 Split and Merge K-Means 

 

 Require: X ,K, s(C ), m(C ), v(C ) 

 Ensure: C , Y 

1: C = K-means (Xt , K) 

2: Repeat 

3: cs = s(C ), Xs = {xn|yn = s} 

4:  {ci|cj} = K-means (Xs, K = 2) 

5: if v(C ) > v(C/cs U {ci|cj}) then C=C/cs U {ci|cj} 

6: until |C| is not changing 

7: repeat 

8: ci, cj = m(C ) 

9: Yj = Yi , C = C /cj. 

10: if v(C ) > v(C /cj ) then 

11: C = C /cj 

12: until |C| is not changing 

13: C = K-means (Xt , C ) 

 

 

This split and merge K-means creates an initial partitioning through a first K-means step 

with a predefined number of clusters. Afterwards consecutive split and merge steps are 

invoked where the changes on the cluster result are assessed using some internal validity 

measure v(C) like the Bayesian Information Criterion (BIC). Those split and merge steps 

are repeated until changes no longer improve the fitness. At the end of the algorithm, an 

optional K-means step can further refine the results of the dynamic updates. Note that 

the input parameter K is optional and per default two, but the algorithm allows setting a 

preliminary expectation on the cluster number to reduce runtime. In order to reduce the 

number of splits and merges, algorithm also introduces a splitting criterion s(C) and a 

merging criterion m(C) for selecting the cluster to split or merge in a step. In this 

approach, s(C) selects the cluster with the lowest average data sample similarity. 

Similarly, m(C) selects the two most similar clusters as merging candidates. Researcher 

claims that split and merge K-means reaches the goal of providing a clustering structure 
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that dynamically selects its cluster number with an acceptable runtime and a favorable 

precision. In addition, this approach can be highly effective to generate an initial 

clustering result with an automatically detected number of clusters as well as in 

incremental applications where the given cluster hierarchy should be updated 

dynamically as new documents are added or old documents are removed. As a final 

remark, this split and merge approach seems to reach the goal of providing a clustering 

structure that dynamically selects its cluster number with an acceptable runtime and a 

favorable precision. 

 

By the end of this subsection, the researcher observes that many of researches, that 

referred within this subsection or not refereed do not mention to inability k-means 

algorithms to cluster non-linearly separable datasets, which one of the main limitation of 

K-means algorithm.  Accordingly, the researcher attempts developing a new algorithm 

to overcome a combination of K-means limitation such as: (i) noise or outlier which 

deteriorates the quality of clustering results (ii) initial centroids that have a direct impact 

on the formation of final clusters (iii) Inability to cluster non-separable datasets.   
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Chapter 3 

3. Methodology and Design 

In this chapter, the researcher presents proposals related to K-means family of 

algorithms. Starting with identifying and explaining in depth the proposed seeding 

algorithm titled DIMK-means, which stands for “Distance-based Initialization Method 

for K-means clustering algorithm” which was developed to select a set of centroids that 

would result in a low cost clustering solution. Then the Chapter explores another 

proposed algorithm called DSMK-means which stands for “Density-based Split- and -

Merge K-means clustering Algorithm” that have been developed to address stability 

problems of K-means clustering, and to improve the performance of clustering when 

dealing with datasets that contain clusters with different complex shapes and noise or 

outliers. 

 

3.1  DIMK-Means “Distance-Based Initialization Method for K-Means 

Clustering Algorithm” 

  K-means algorithm is classified as a partition-based clustering technique, which 

is popular and widely used and applied to a variety of domains. K-means clustering 

results are extremely sensitive to the initial centroid; this is one of the major drawbacks 

of K-means algorithm. The researcher proposes a selection method for initial cluster 

centroid in K-means clustering instead of the random selection method. The research 

provides a detailed performance assessment of the proposed initialization method over 

many datasets with different dimensions, numbers of observations, groups and clustering 

complexities. 

 

3.1.1 The Effect of Random Selection of the Initial Clusters’ Centroids 

Selection of initial centroids in K-means algorithm have significant impact on the 

results. The quality of K-means clustering results depends heavily on the manner of 

initialization. If this done incorrectly, things could go horribly, wrong. In this sub section, 
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we will illustrate by examples that choosing different starting point values lead to 

different clusters with different error values. 

The first example shown in the Figure 1.3, which shows the results of running the K-

means clustering algorithm on dataset with input parameter (k=2).  This simple example 

shows that the position of starting point “initial cluster centroids” is important when 

trying to determine the best representation of clusters. When comparing Figures  8.1 and 

8.2 visually; it can be determined which of the two clustering is “better”, clusters in the 

second case “Figure 8.2” has better results as it could include all the points in each cluster 

while in the first Figure one of the points from the right cluster were included in left one. 

In addition, Figure 8.2 has lower values of objective function E than the first clustering 

result in “Figure 8.1”.  

 

 
Figure 3.1: Example 1 show Initial centroid effects on K-means result. 

 

In the second example shown in the Figure 1.3, a dataset is supposed to consist of N 

points in five tight clusters of some tiny radius arranged in a line, with some large 

distance D between them. These artificial datasets distribution is shown in Figure 1.3.1. 

If the input parameter k=5 to initialize K-means then five centroids are selected at random 

from the data. There is some chance that we would end up with no centroid from cluster 

5, two centroids from cluster 3, and one centroid each from clusters 1, 2, and 4. These 

artificial datasets are shown in Figure 1.3.2. After the first iteration of K-means, all points 

in clusters 1 and 2 will be assigned to the leftmost center. The two centers in cluster 3 

will end up sharing that cluster. In addition, the centers in clusters 4 and 5 will move 

roughly to the centers of those clusters. In this example, the results of K-means algorithm 

  
Data Points 

Cluster centroid 

 Initial centroid 

Figure 8.1 

  
Data Points 

Cluster centroid 

 Initial centroid 

Figure 8.2 
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shown in Figure 1.3.3 are bad as it merges the two most left clusters together and splits 

the middle one into two different clusters. 

 

 

Figure 3.2: Example 2 show initial centroid effects on K-means result. 

The above two examples show clearly how important the initialization process is and its 

effects on the results of K-means algorithm, which concludes that the selection of the 

initialization centroids is crucial. Most of developed algorithms to solve the initialization 

process sensitivity suffer from high computational complexity and therefore do not have 

strong scalability. 

 

3.1.2 Proposed Method 

First of all, It is well known that selection of the first centroids when they are far 

apart and each centroid belongs to different cluster has several benefits: [i] Decrease 

computation amounts, [ii] Optimize algorithm performance by minimizing the objective 

function of K-means algorithm which leads to better results. 

This research proposes a new simple and scalable method for the initialization process 

in K-means; this method starts by choosing random initial centroid then some 

calculations are performed to decide whether the point is suitable to be considered as a 

first initial centroid or not. Such decision is based on the process of computing distances 

D 

Figure 1.3.1 

Figure 1.3.2 

     

     

Figure 1.3.3 

     

 Cluster border Cluster centroid D Distance between clusters 
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between the selected centroid and other points within the dataset. The researcher uses 

two types of measuring distances between points “Euclidian or Manhattan” Because of 

the different nature of data. Figure 3.3 gives a general overview to the mechanism of the 

proposed method to calculate the best initial centroids for K-means algorithm. 

To explain the example in Figure 3.3: Suppose we have a dataset as it occurs in figure 

and the value of K=3 which represents the number of clusters. DIMK-means will start 

by selecting first centroid randomly (suppose the point shown in Figure 3.3 “iteration j” 

at the bottom right part as to be selected point). After selecting the point, the algorithm 

is to compute distances among the random selected point and the rest points in the 

dataset. Then the values of (ε , ε′) calculated Based on the values of the distances 

calculated in the previous step, the algorithm decides that first selected point is not 

suitable and not good enough to be considered as basis for calculating the acceptance 

center because of the value of 𝜀′is greater than 𝜀. The algorithm still trying to select the 

first suitable centroid and the  ε' is greater than ε , so a new point selected randomly as 

shown in  Figure 3.3 “iteration j+1” and the current one ignored and is considered noise; 

because it is relatively far from the other points in the dataset. The algorithm repeat the 

previous steps on the new point and the values of (ε , ε′) calculated, because of the value 

of ε' is less than ε the algorithm decides to calculate the mean value of the nearest points 

to the selected point, which are shown in the Figure 3.3 “iteration j+1” inside the black-

dotted line. The resulting mean value is considered as the first acceptance initial centroid 

(C1). Then those nearest points are ignored and a new farthest point is selected as shown 

in Figure 3.3 “iteration j+2” where the selected farthest point located at the left side. The 

algorithm repeats the steps on the farthest point and ε' is greater than ε and there is one 

acceptance centroids, then algorithm choose the closest point from the current point and 

repeat the steps of algorithm while current point will be considered as a noise. Because 

of the value of ε' is less than ε the algorithm decide to calculate the mean value of the 

nearest points to the selected point, which are shown in the Figure 3.3 “iteration j+2” 

inside the black-dotted line located at the left side. The resulting mean value is considered 

as the second acceptance initial centroid (C2). The same steps are executed again and the 

third acceptance initial centroid (C3) is calculated as shown in the Figure 3.3 “iteration 

j+3”. All initial centroids are selected, and then the standard K-means is applied to the 

whole dataset. 
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Figure 3.3: shows the operation of selecting candidates of the initial centroids from artificial 

dataset using DIMK-means. 
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Assumption I: The number of objects in a cluster is close or equal to the number of 

objects in other clusters. 

This assumption is based on the fact that K-means algorithm always get better results 

with datasets which are similar in density and close in the objects number in each cluster. 

Therefore, this assumption is valid for a large number of datasets. 

Computing the distances between the selected point and the remaining points is the 

backbone of this method because the distance values between the selected centroid and 

its nearest point is used to calculate the value of ε’ and is compared with the value of ε 

which is equal to the mean value of the distances between each pair of N points.   

Determine the number of the closest points to the selected centroid depending on the 

Assumption I, where the number is equal to 80% to 90% of the number computed from 

dividing the total number of dataset objects divided by the number of clusters given from 

the user. If the first selected point was noise; i.e. ε’> ε; this point is ignored and another 

point should be selected randomly as initial centroid until the first centroid is found. 

Then; the next centroid should be selected as the farthest points from the first centroid. 

If the second selected point was noise; it is ignored and its closest point is selected as 

centroid which in turn should be tested if it is noise or not. Then, the mean value of N 

number of the closest point to the current centroid is saved as the first accepted centroid 

which is ignored in the following computations. This method is repeated until the 

required number of centroids is identified. 

   

3.1.3 DIMK-means Steps: 

The proposed clustering algorithm “DIMK-means” consists of five main steps, 

which are as follows:  

Suppose that we are going to partition X={x1,x2,...,xN} which is a dataset with N 

number of objects, and K is an input parameter equal to number of clusters. 

1. Select First Centroid Randomly: 

DIMK-means starts with selecting a random point to be used in computing the first 

centroid. Which in turn is used to calculate other centroids by computing the 

distances among the dataset points. 

2. Calculate distances from the selected point to the other points: 

The base of this algorithm is to compute distances among the random selected point 

and the rest points in the dataset. Researcher choose distance calculation algorithm 



www.manaraa.com

14 

 

“Euclidean distances” to be applied, that distance is special because it conform to 

our physical concept of distance. 

 

3. Calculate the values of (𝐧, 𝛆 , 𝛆′): 

Based on the values of the distances calculated in the previous step, the algorithm 

decides if the selected point is suitable and good enough to be considered as basis 

for calculating the acceptance center or not. 

The variables (𝑛, 𝜀 , 𝜀′) mainly depend on the values of the distances between the 

selected point and the other points in the dataset, these variables are essential to 

make a decision whether this point is suitable or not. 

The used variables are defined as follows: 

 n: Is the minimum expected number of points located in each cluster that 

belongs to a particular dataset and closest to the selected point, 

Depending on “assumption I”, the value of n is usually equals a certain 

percentage of the total number of points divided by K of centers. 

 𝜺 : Is the average value of distances between each pair of n points, these 

n points are the nearest points to a selected point. 

 𝜺′: Is the distance between the selected point in the first step and the 

nearest point. 

 

4. After calculating (𝐧, 𝛆 , 𝛆′), the selected point is checked whether it is valid to 

be used to calculate the acceptance centroid or not. 

Determining if the selected point is appropriate or not is based on the values of 

variables (n,ε ,ε')  as follows: 

a. If ε' is greater than ε and the first initial centroid is not selected yet, then 

another point should be selected randomly and the current one should be 

ignored and is considered noise because it is relatively far from the other 

points in the dataset. 

b. If ε' is greater than ε and there is one or more selected centroids then choose 

the closest point from the current centroid. The current point will be 

considered as a noise, while the new closest point will be used to calculate 

a new centroid as in steps 1 through 3 by calculating the distances and 

finding new values for n, ε  and ε'. 
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c. If ε' is less than ε then calculate the mean value of the nearest n points to the 

selected point. The resulting mean value is considered as the acceptance 

initial centroid. Then those n points are ignored and a new farthest point is 

selected and step 2 is repeated until all centroids are selected. 

 

5. After all centroids are selected run K-means with selected initial centroids 

parameters. 

After selecting all initial centroids, the original K-means is applied to the whole 

dataset. 

  

 

3.1.4 Advantages and Limitations of DIMK-Means Algorithm  

 Advantages: 

a. The algorithm is not difficult to implement.  

b. The algorithm does not require any additional parameters more than the 

standard K-means algorithm. 

c. The algorithm makes K-means less sensitive to noise. 

d. The performance of K-means algorithm with the proposed initialization 

method “DIMK-means” is more effective and converges to more accurate 

clustering results than those of the random initialization method. 

e. The proposed method has substantially outperformed the standard K-means 

in terms of speed; It is true that the proposed initialization method needs 

more time than random initialization method but the initial centroids selected 

by the proposed initialization method are very close to the true clusters’ 

centroids, thus reducing the rest standard K-means computations. 

 

 Limitations:  

1. DIMK-means algorithm did not reduce the number of parameters needed. 

2. When a number of objects in a cluster is not close to the number of objects 

in the other clusters, DIMK-means gives a similar or slightly better 

performance than the standard K-means. This is not a big problem considering 

that K-means algorithm always gets better results with datasets, which are 

similar in density and size.   
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3.1.5 DIMK-means Algorithm Pseudo-Code  

Suppose that we are going to partition X={x1,x2,...,xN} which is a dataset with N 

number of objects, and K is an input parameter equal to number of clusters. 

 

 

Algorithm 3.1 : DIMK-means  

Purpose:            Clustering dataset 

Input:                 X={x1,x2,…,xj} (set of entities to be clustered) 

                 K (number of cluster) 

                 MaxIters (Limit of iterations) 

 

Output:              C= {C1,C2,…,CK} (set of cluster centroids) 

                 L= (set of cluster labels of X) 

 

 

Procedure 

 

1. Choose an initial centroid ci = xr, where 0< i ≤ K and xr random from X.  

2. Compute the distance between selected centroid ci and each point in X, and 

then sort the data points based on the resulted distances. 

D = d(ci, xj)  

          Where D: typically is chosen as the Euclidean distance, 0 < j ≤ N. 

 

3. Get a subset of the sorted data with a number of points equal to N  

n = CeilEven (
N k⁄

σ
)  

           Where n: number of data most close to the selected centroid ci, σ is a  

          double    number 1< σ ≤2, and CeilEven is a function that rounds a double  

         number up to    the nearest even integer. 

 

4. Compute the average distance between each pair of n points  
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ε = ( ∑ d(𝑥m+1
′ , 𝑥m+2

′ )

n

m=0,   
m=m+2

)  
n

2
⁄  

 

ε′ = d (ci , 𝑥∗)  

Where 𝑥′ represent the closest data points to ci, while m is 

incremented by 2, and 𝑥∗ is the closest point to ci. 

 

5. If { ε′ > ε and i=1}; ignore ci and go to step 1 to select a new ci 

6. If { ε′  > ε and i > 1}; ignore ci, select a new ci with value equal to the closest 

point to the previous ci; and go to step 2. 

7. Choose the next centroid ci+1 to be the farthest point from ci. 

 

 

 

8. The mean value of n points closest to ci is identified as the centroid and is saved 

as “acceptance centroid Ci “. 

Ci = ( ∑ 𝑥m
′

n

m=0

) n⁄  

          Where Ci: represent the mean value of the closest points to ci. 

 

9. Ignore n points, which are the closest to ci. 

10. Go to step two with value of ci = ci+1. 

11. Repeat steps until a total of K centroids are chosen. 

12. Run K-means Algorithm with selected centroids. 

13. End; 

 

 

 

The following Figure 3.4 show flowchart that exhibits the process of DIMK-means and 

explains the abovementioned pseudo code:  
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Figure 3.4: Flowchart of DIMK-means algorithm. 
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3.2     DSMK-Means “Density-Based Split-And-Merge K-Means 

Clustering Algorithm” 

The K-means algorithm is a simple and fast clustering technique that exhibits the 

problem of merging some clusters which are close together. In addition to that, the 

algorithm generally suffers from unsatisfactory accuracy when the dataset contains 

clusters with different complex shapes, sizes, noise and outliers. In this work, researcher 

addresses these problems by combining split and merge strategy and density clustering 

techniques. The proposed density-based split and merge K-means algorithm comprise of 

two parts, the first one depends on density to decide if the cluster to be split or not, and 

distance to decide if the clusters to be merged or not.  

If the first part was not applicable, then the algorithms applies the second part which 

tackles noisy data and depends on density to identify noisy objects or points in a dataset. 

The next section explains this procedure in more details. 

Using density with split and merge techniques in this algorithm makes the proposed 

algorithm capable of detecting clusters with different complex shapes. Furthermore, 

density technique helps in discovering noise or outlier. This gives the proposed algorithm 

higher accurate results than the standard K-means algorithm when applied on datasets 

containing large numbers of objects, clusters with different shapes and/or clusters 

containing noise objects. 

 

3.2.1 Performance of Standard K-Means 

This subsection discusses a set of experiments on K-means algorithm with 

different datasets. These experiments illustrate the ability of K-means algorithm to find 

the true cluster, as clarifying the strengths and weaknesses of algorithm is the end purpose 

of these experiments.  

To establish practical applicability of K-means algorithm, its performance was tested on 

a number of artificial and real world datasets. Those datasets contain clusters with 

different complex shapes, densities, sizes, noise and outliers. The main purpose is to 

show how K-means work with this type of datasets. It was experimented on two different 

types of datasets which are: Artificial (Ground Separation, document Sim, and Rnoisy) 

and real datasets (Web Log, Image Extraction). These datasets are described in depth in 

Chapter 5. 
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The next paragraphs illustrate researcher observations on the results of standard K-means 

algorithm on all previous datasets. 

 

 Interpreting Results of K-means with Ground_Separation dataset: 

In many clustering analysis problems, one would like to extract structure from 

cluttered background. This is the case in the Ground_Separation dataset. In such cases, 

it is easy to predict that K-means will not get accurate results, due to their requirement 

to partitioning all the input data. To illustrate this point, consider the Ground_Separation 

dataset shown in Figure 3.5, which contains a dense central cluster of random points 

surrounded by equally distributed clutter points (the “background”) and there are four 

extra clusters around the ring cluster. As expected, on these data, K-means failed as it 

split the central group into multi pieces. 

This experiment was running many times on Ground_Separation dataset as shown in 

Figure 3.5 The main feature of this dataset is that it contains different structurally 

clusters, one is compact, and the other with extended structure. Here, K-means produces 

in-accurate results, as shown in Figure 3.6.(A, B, C, and D).  After running the algorithm 

lots of times with these datasets, the results were bad every time. Researcher noticed that 

some parts of the ring-shaped cluster were classified with disparities between five or six 

different clusters, even though all the points forming the ring belong to one cluster. These 

results shown in Figure 3.6.(A,B,C and D).The most important general observation is 

that centroids of clusters obtained from K-means results, which plotted as x on Figure 

3.6, is always not in a dense area.  

 
Figure 3.5: plot points belong to Ground_Separation dataset. 

Ground_Separation dataset 
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Figure 3.6: Low accurate results obtained with standard K-means algorithm with 

(Ground_Separation dataset). 

D 

C 

B 

A 
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 Interpreting Results of K-means with Weblogs dataset: 

Using K-means to get real work done means running the algorithm lots of times 

on different types of datasets. This time we test the algorithm performance on real 

datasets “Weblogs”. In such cases, it is easy to predict that K-means will not work well, 

due to their different cluster shapes in weblog dataset. Weblogs datasets that shown in 

Figure 3.7 is comprised of three clusters, which include outliers, the two clusters on both 

ends, have a sphere shape while the third cluster, in the middle, contains a large number 

of objects, which extends horizontally as “Gaussian structure”. Figure 3.8 shows the 

results of standard K-means applied on weblogs dataset, where it is easy to observe with 

naked eye the low accuracy of results. In Figure 3.8 (A, and B) the curve with a dotted 

line in black represents bad results as one true cluster was merged with part of the cluster 

in the middle. Furthermore, in Figure 3.8 (C); the results were very bad because parts of 

the middle cluster “cluster with Gaussian structure” was merged with two other existing 

clusters which marked by curves with a dotted line in black and red. 

 

 
Figure 3.7: plot points belong to Ground_Separation dataset. 

 

Weblog dataset 
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Figure 3.8: Low accurate results obtained with standard K-means algorithm with (Weblog 

dataset). 

 

Weblog dataset 
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 Interpreting Results of K-means with Image_Extraction dataset: 

The researcher applied K-means on Image-Extraction dataset, and as the previous 

experiments, it was easily noticed that the results were inaccurate. The researcher 

observed during the tests that the result always took approximately the same shape. 

Figure 3.9.A represents the plot of the datasets points on two-dimensional space. While 

Figure 3.9.B represents K-means result with the same dataset.  Like the previous 

experiments, the observation was that bad clusters’ centroids obtained from K-means 

results were not in dense area.  

 

 
Figure 3.9: Low accurate results obtained with standard K-means algorithm with (Image 

Extraction dataset). 

 

Image Extraction dataset 

A 

B 
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 Interpreting results of K-means with Rnoisy dataset: 

K-means was applied on Rnoisy dataset and the results were sometimes of high 

accuracy and other times with bad accuracy, which convinced the researcher that K-

means has unstable results when applied on datasets similar to Rnoisy datases, which 

contain many noisy points. 

K-means algorithm high accurate results obtained when applied on Rnoisy 

dataset are shown in Figure 3.10. It is clear in Figure 3.10 that the data contain many 

noisy points which K-means algorithm is very sensitive to. The researcher observed 

during the tests that the shape of clusters in results takes different forms in each time. 

Figure 3.11(A) summarizes the results and it is easy to observer with naked eye how low 

accurate the obtained results are. Curves in Figure 3.11(A) show the bad results area were 

red-dotted line shows that one true cluster has been split into two clusters “blue and red”, 

while the black-dotted line shows that two true clusters merged into one cluster “yellow”. 

Many other bad results occur repeatedly In Figure 3.11(B.C.D). Finally, researcher 

observed that noisy points are always not in dense area. 

This observation was the basis the researcher depended on to develop new ways 

to overcome the weakness of K-means algorithm when working with noisy datasets. 

 

 
Figure 3.10: High accurate result obtained with standard K-means algorithm with (Rnoisy). 

Rnoisy dataset 
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Figure 3.11: Low accurate results obtained with standard K-means algorithm with (Rnoisy 

dataset). 

A 

B 

C 
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 Interpreting Results of K-means with Document_Sim dataset: 

By running K-means, multiple times with Document_Sim dataset that contains 

number of noise points larger than Rnoisy dataset, in many times the results were 

unacceptable with low accurate results. In rare times, standard K-means algorithm 

obtained high accurate results when applied with Document_Sim dataset as shown in 

Figure 3.12.  

To illustrate the unacceptable results “bad result” let us see Figure 3.13 

(A.B.C.D). The Figure shows the bad results areas which are inside the red-dotted line. 

That line represents either areas where one true cluster has been split into multiple 

clusters or represents a cluster which is basically formed of noise points, while the black-

dotted line shows that two or more true clusters are merged into one cluster. The noise 

points always are not in dense areas. This encourage the researcher to develop new ways 

to overcome these weaknesses of K-means algorithm. 

 

 

 
Figure 3.12: High accurate result obtained with K-means algorithm with (Document_Sim). 

 

 

Document_Sim dataset 
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Figure 3.13: Low accurate results obtained with standard K-means algorithm with 

(Document_Sim dataset). 

A 

D 
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3.2.2 Proposed Solution 

A discussion of the previous subsection experiments results shows the 

performance of K-means algorithm with different datasets with different behavior. Now 

researcher reviews the proposed ideas designed to overcome and solve major limitation 

and weaknesses of K-means algorithm. Generally, the algorithm suffers from 

unsatisfactory accuracy when the dataset contains clusters with different complex shapes, 

sizes, noise and/or outliers.  

Based on the observation from the previous experiments where K-means merged 

true clusters, the resulting cluster centroid was -most of the time- not located in a density 

unit as it is locate between multiple true clusters. This observation was a result of the fact 

that K-means algorithm gets low accurate results when working with datasets contains 

clusters with different complex shapes. So, the researcher proposes to apply Split and 

Merge technique to overcome such limitation. 

Another observation is the low accuracy of K-means algorithm when working 

with noisy datasets where noise or outliers always spread between datasets objects not in 

density unit. A proposed solution to overcome such limitation is by temporarily ignoring 

noisy objects which are not located in dense units, then rerunning standard K-means 

which is expected to give better results without the neglected noise. After that, re-include 

the neglected noisy objects to the nearest clusters. 

The proposed algorithm includes solutions for cluster with complex shapes and 

datasets with noisy objects. The solution for the first problem is split and merge while 

the solution for the other problem is called anti-noise. This algorithm is applied on the 

results of standard K-means starting with checking if all the clusters’ centroids are 

located in density units, anti-noise solution is applied, but if one or more centroids are 

located in non-density unit, then split and merge solution is applied. 

 

The following cases explain in details how each solution is implemented: 

 Split and Merge Method: 

When applying standard K-means on datasets containing clusters with different 

complex shapes, some of the resulting clusters are either merged into larger clusters or 

split to smaller ones. First, in order to determine which method to apply we need to 

identify if the clusters have centroids in non-density units. So, Sum Square Error “SSE” 
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is computed for each cluster in standard K-means results where the cluster with smallest 

SSE value is selected, then we compute Epsilon “ε” which is the radius that delimitates 

the neighborhood area of a point by calculating the distance between the centroid of the 

selected cluster and the nearest point multiplied by two, which is the shortest suitable 

Epsilon “ε” distance that  almost contain appropriate number of points. Then calculating 

“MinPts” which represent the minimum number of points that must exist in the ε 

distance. MinPts is equal to 0.75 of that number of points within ε radius (approximated 

to an integer number).  The researcher takes 0.75 of the points to be considered as MinPts 

in order to exceed the varying density of clusters centroids. 

In addition of previous reasons and based on experiments, the researcher found that 

multiplying the distance between the centroid and its nearest point by 2 is the most 

convenient and yields the best results most of the time, as well as determining MinPts by 

multiplying the number of points falling within ε radius by 0.75. 

Second, each cluster centroids in the standard K-means results is tested to make sure it 

has a number of point equal to or greater than MinPts. If there is at least one centroid that 

has a number of neighbor points within ε” radius that is less than MinPts; then it is not 

in a density area, and we start the Split and Merge method, otherwise we use Anti-noise 

method as in case 2. 

 

 

 Density-based cluster split: 

The splitting process is applied on clusters with centroids located in non-density 

units, each of those clusters is split into two new clusters. The resulting cluster centroids 

are tested to assure them all located in density units. The process of splitting is repeated 

until all the resulting cluster centroids are located in density units using the same ε and 

MinPnts calculated at the first run.  

Splitting clusters into only two new sub-clusters instead of three or more is based on 

the fact that the possibility of having new cluster centroids in density unit in the least 

number of possible sub-clusters is higher than having such results in more than two sub-

clusters. 

A counter in increased by one each time a cluster is split, in order to keep record of 

how many split process were done to be used in the merge process. 
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 Single linkage based cluster merge: 

When the split process is finished, all clusters’ centroids are in density units and 

the number of clusters is more that the number of clusters obtained from the standard K-

means applied in the first step.  

The merge process starts by creating “distance matrix” between each pair of clusters’ 

centroids including all clusters within the dataset. The resulting distance matrix is y*y 

matrix where y is the number of all the clusters in the dataset including the clusters 

resulted after the split process. This matrix is used to identify the two most close cluster 

centroids with the dataset in order to check if they both belong to one true cluster. Single 

linkage “nearest neighbor or shortest distance” concept is applied for this purpose, where 

it calculates and finds the shortest distance between a pair of objects each of them is 

located in one of the selected closest clusters. Then, the merging will take place if at least 

one of the following conditions is true: 

1: The distance between the two nearest points that belong to the clusters with 

closest centroids is less than or equals to ε. 

2: The point in the middle between the selected pair of objects is checked if it is 

in a density unit and has a number of points equal or larger than MinPts within 

ε radius that belong to the closest clusters. 

 

If one of the above conditions is fulfilled, then the two closest clusters are merged, then 

the distance matrix is calculated and the process is repeated as many times as the split 

process. Otherwise, the second shortest distance from the distance matrix is selected and 

the process is repeated. 

At the end of this process, the number of resulting clusters is the same as the number of 

clusters resulted from the standard K-means where K is user parameter. 

 

 

 Expressing Split and Merge Method by Example : 

One of the famous and complicated clustering analysis problems is to extract 

structure from cluttered background. This is the case, for example, with figure/ground 

separation and perceptual grouping like Figure 3.6 and Figure 3.14. The last figure, 

specifically Figure 3.14(A), shows results of standard K-means algorithm that gives very 

bad results as it split cluster in the center of Figure into two parts each part merged into 
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different clusters, one of these clusters plotted in red color with square shape, and the 

other plotted in blue color with circle shape.  

When applying split and merge method on the same problem Figure 3.15, each 

of the two clusters obtained from standard K-means were split into three clusters on two 

runs, resulting in six new clusters instead of the original two. The split counter recorded 

four splits. In merge process, the two clusters in the middle were merged into one cluster, 

while the clusters in the ring were merged into one cluster through three merge processes. 

The process of DSMK-means clustering algorithm is explained in Figure 3.15. The final 

shape of the results is in Figure 3.14(B). 

The results obtained from the split and merge method cannot be obtained from 

the standard K-means. As the applied method used the density and single linkage 

concepts combined with the standard K-means algorithm, which resulted in better results. 

 

 
Figure 3.14: Low accurate result obtained with K-means V.S high accurate result obtained with 

DSMK-means algorithm. 

A. Results of Standard K-means 

B. Results of DSMK-means Algorithm 
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Figure 3.15: Proposed Split and merge Method steps. 

Clarify all the steps of DSMK-means algorithm. 

Merge Result 

Split Result 

Final Result 
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 Case two - Anti-Noise proposed Method:  

In standard K-means clustering, when applied on datasets containing noise 

objects , the results are -most of the time- of low accuracy. As the standard K-means 

includes all noise objects in the calculations, the end result will lack accuracy, in addition, 

standard K-means will either merge some true clusters into larger clusters or -in some 

cases- identify groups of noise points as clusters. 

The researcher has developed a way to decrease the effect of noise objects on the end 

results through observations during lots of experiments applied on different datasets 

some of which were explained in the previous section. The researcher concluded that -

most of the time- the noise points were in non-density unit as well as most of the points 

far from the centroids even when the K-means results are highly accurate. Based on that 

conclusion, the researcher build the Anti-noise method which is mainly about neglecting 

points far from the centroids in order to acquire high accuracy results. 

Anti-noise method starts with calculating distances between each point in a cluster and 

its centroid where the distance are listed in an ascending order. Starting with the farthest 

points -which has the largest distance-, Anti-noise checks if that point is located in 

density unit or not. If it was located in non-density unit, then it is temporarily neglected 

and the next farthest point is check. This process goes on until a point that is located in a 

density unit is found or all the points are checked. In the case of finding no points in 

density unit, then the whole cluster is neglected, and the next cluster is checked in the 

same manner. 

After checking all clusters within the dataset, standard K-means is applied again on the 

dataset without the neglected points. The results of such run will have higher accuracy 

than those when including the neglected points and the resulting centroids will be very 

close to the true centroids. Afterwards, each of the neglected points is assigned to the 

cluster with nearest centroid. 

 

 Expressing Anti-Noise Method by Example: 

From the experiments this method is important and completes the “split and 

merge” method as it applied when all cluster centroids are located in density units. 

Anti-noise method steps are shown in Figure 3.16, where Figure 3.16(A) is showing the 

results of standard K-means algorithm which easy to notice how bad the results are. In 

this case, the split and merge method can not be applied as all the centroids are in density 

units. Figure 3.16(B) shows the result of K-means algorithm on the Document_Sim 
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dataset without neglecting noisy points, and by comparing Figure 3.16(A) and Figure 

3.16| (B) you can notice which points are neglected. When analyzing standard K-means 

results without including the neglected noise points, it is noticed that Anti-noise method 

was able to locate centroids almost exactly as the true centroids. Figure 3.16(C) shows 

the final results of DSMK-means algorithm, the algorithm relocates the neglected points 

and assigns each one to the closest clusters’ centroids which lead to high accuracy of 

algorithm and makes it able to cluster datasets with different complex shapes or those 

who have noise points. 

 
Figure 3.16: Proposed anti-noise method steps on Document_Sim dataset. 

A. Final results of case two of DSMK-means algorithm  

B. Results of Standard K-means 

C. Results of anti-noise case without locate neglected points  
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3.2.3 DSMK-means Algorithm Pseudo-Code 

Suppose that we are going to partition X={x1,x2,...,xn} which is a dataset with n number 

of objects, and k is an input parameter equal to number of clusters required. 

 

Algorithm 3.2 : DSMK-means  

Purpose:            Clustering dataset 

Input:                 X={x1,x2,…,xj} (set of entities to be clustered) 

                 K (number of cluster) 

                 MaxIters (Limit of iterations) 

Output:              C= {C1,C2,…,CK} (set of cluster centroids) 

                 L= (set of cluster labels of X) 

Procedure 

1. RUN standard K-means algorithm 

2. COMPUTE sum square error “SSE” for each cluster. 

3. COMPUTE  ε and MinPts value for cluster with minimum “SSE” value. 

 Eps or 𝜺 , the radius that delimitate the neighbourhood area of a point 

(Eps-neighbourhood) 

 MinPts, the minimum number of points that must exist in the Eps-

neighbourhood. 

4. FOREACH cluster  

5. Create list of clusters with centroids Ci in non-density units. 

6. IF number of point's within Eps-neighborhood contains < MinPts (centroid in density 

unit). 

7. THEN add cluster to list Ci 

8. ENDFOR EACH 

9. CASE METHOD OF 

10. CASE-ONE “If one or more centroids Ci is not in density unit”: 

(Spit and Merge started) 

11. Declare count=0 represent number of  splitting operation 

    SPLIT PROCESS     .     

12. For all Clusters Ci List 

13. IF centroid Ci is in non-density unit 

14. Split Ci cluster into two clusters with standard K-means (K=2). 
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15. DELETE Ci cluster and ADD split clusters to List 

16. Increase count by 1 

17. ENDIF 

18. ENDFOR 

    MERGE PROCESS     .     

19. WHILE count != 0 

20. Calculate centroids distance matrix 

21. FOR each item in distance matrix  

22. Find the tow nearest clusters centroids from all dataset clusters using 

distance matrix 

23. Find the two closest points from the two closest clusters using single 

linkage. 

24. IF (distance between two nearest points is less than or equals to ε) 

THEN Merge those two clusters. 

25. ELSE, Find middle point 

26. IF (middle point between two nearest points from two closest clusters 

“Single Linkage” is in density unit)   THEN 

27. Merge those two clusters. 

28. Decrease count by 1 

29. ELSE, 

30. Go To step 22 

31. ENDIF  

32. ENDFOR 

33. IF no clusters are merged THEN 

34. Merge tow nearest clusters’ centroids 

35. Decrease count by 1 

36. ENDIF  

37. ENDWHILE 

38. CASE-TWO “ If all centroids are in density units”: 

39. FOR  each cluster Ci 

40. FOR  each point Pn 

41. Compute distance between the centroid and Pn where n is the number 

of points in a cluster Ci 
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42. ENDFOR 

43. Sort the distances in ascending order in each Ci 

44. ENDFOR 

45. FOR  all centroids 

46. WHILE the farthest point from centroid Ci is not in density unit 

47. Neglect the point and considered as noise 

48. ENDFOR 

49. RUN standard K-means algorithm without the neglected points “noise” 

50. Depending on the K-means cluster results, the neglected points are 

assigned to the closest cluster. 

51. ENDCASE 

52. End ALGORITHM 

 

3.2.4 Advantages and Limitations of DSMK -Means Algorithm  

 Advantages: 

1. The algorithm can handle large numbers of datasets as it solves two different 

problems in standard K-means (sensitivity to noise, complex shapes). 

2. The algorithm has combined the characteristics of partition clustering and 

density clustering concepts. 

3. The algorithm is not difficult to implement.  

4. The algorithm does not require any additional parameters more than the 

standard K-means algorithm. 

5. The algorithm is less sensitive to noise and outlier. 

6. Algorithm got better accuracy when datasets containing clusters with 

complex shapes and sizes. 

7. Algorithm able to cluster non-linearly separable data. 

 

 Limitations:  

1. Algorithm did not reduce the number of parameters needed. 

2. Algorithm increases the computational complexity. 

3. In some rare cases, algorithm had bad results as the standard K-means. 

 

The next Figures (3.17 – 3.18) exhibits the flow chart of the DSMK-means algorithm: 
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Figure 3.17: Flowchart of DSMK-means “Split and Merge” algorithm. 
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Figure 3.18: Flowchart of DSMK-means “Anti-noise” algorithm. 
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Chapter 4 

4. Experimental Results 

Description of the datasets used in experiments and the measurement techniques in 

addition to measuring the accuracy of the proposed algorithms’ results to ensure their 

ability in delivering better results than other algorithms 

  

5.1   Datasets Specifications 

This section describes and identifies the specifications of datasets used in the all 

experiments on the proposed algorithms. The datasets varied between real world and 

artificial datasets. 

 

5.1.1 Artificial Datasets 

The Artificial datasets used in the experiments are: 

 The Ruspini dataset:  

Ruspini dataset [39], is a collection of 75 points, arranged in 4 groups, in the Euclidean 

plane. It is widely used to illustrate the effectiveness of clustering methods especially the 

effect of selecting the initial centroids.  

 The Rfivec dataset:  

Artificial dataset generated by the researcher with two dimensions, this dataset is 

designed in a way that is sensitive to centroid initialization. This dataset contains 135 

points distributed into five true clusters. Values of the generated artificial dataset are used 

to assess the level of the algorithm accuracy and ability to identify true clusters.  

 Rnoisy dataset:  

Artificially polluted datasets with noise generated by the researcher with two dimensions, 

this dataset designed in a way to contain a lot of noise and outliers. This dataset consists 

of 188 points distributed in six true clusters. Values of the generated artificial dataset are 
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used to assess the level of K-means algorithm accuracy and ability to identify true 

clusters. 

 Ground_Separation dataset:  

Dataset contains six different complex shapes and sizes generated by the researcher with 

two dimensions. The dataset consists of 479 points distributed into six true clusters. This 

dataset was designed to be “hard” because of different clusters’ shapes. It is designed to 

measure K-means ability to identify clusters with complex shapes. 

 Separation_2Circle dataset : 

Dataset generated by the researcher with two different complex shapes and sizes with 

two dimensions. The dataset consists of 337 points in two true clusters. This dataset is 

designed to be “hard” because of different clusters’ shapes. It is designed to measure K-

means ability to identify clusters with complex shapes. 

 Document_Sim dataset:  

Document_Sim dataset [40] generated so that many noises are scattered. The dataset 

consists of 200 points in five true clusters. The dataset is designed to be "hard". i.e. there 

is a large number of outliers and noise are scattered between five true clusters. It is 

designed to measure K-means ability to identify true clusters in noisy datasets. 

 Aggregation dataset:  

Aggregation dataset [41] consists of the seven perceptually distinct clusters with different 

shapes. The dataset consists of 788 points distributed in seven true clusters. The dataset 

designed to be "hard" in order to measure K-means ability to identify clusters with 

complex shapes. 

 

 

5.1.2 Real Datasets 

All datasets used in the following experiments and more can be found in UCI Machine 

Learning Repository [42] which is a collection of databases, domain theories, and data 

generators used by the machine learning community for the empirical analysis of 

machine learning algorithms. 
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 Iris Dataset:  

This is perhaps the best-known database to be found in the pattern recognition and 

clustering literature. The Iris flower dataset or Fisher's Iris dataset is a multivariate 

dataset introduced by Sir Ronald Fisher (1936) as an example of discriminant analysis. 

It is sometimes called Anderson's Iris dataset because Edgar Anderson collected the data 

to quantify the morphologic variation of Iris flowers of three related species, which are 

shown in Figure 4.1 [43]. The dataset contains three classes of 50 instances each, where 

each class refers to a type of Iris plant. One class is linearly separable from the other two; 

the latter are not linearly separable from each other. Table 5.1 illustrates the 

specifications of the dataset. 

 

Table 5. 1 Iris dataset specifications 

Dataset Characteristics:   Multivariate Number of Instances: 150 

Attribute Characteristics: Real Number of Attributes: 4 

Associated Tasks: 
Classification, 

Clustering 
Missing Values? NO 

Area Life   

 

Attribute Information: 

1.  Sepal length in cm 

2.  Sepal width in cm 

3.  Petal length in cm 

4.  Petal width in cm 

5.  GROUPS 

 Iris Setosa 

 Iris Versicolour 

 Iris Virginica 

 

 

 Figure 4.1: three related species of Iris flowers (Iris setosa, Iris virginica and Iris versicolor). 
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 Libras Movement Dataset:  

The dataset contains 15 classes of 24 instances each, where each class references to a 

hand movement type in LIBRAS as exhibited in Figure 4.2. In the video pre-processing, 

time normalization is carried out selecting 45 frames from each video, in according to a 

uniform distribution. In each frame, the centroid pixels of the segmented objects (the 

hand) are found, which compose the discrete version of the curve F with 45 points. All 

curves are normalized in the unitary space. In order to prepare these movements to be 

analyzed by algorithms, a mapping operation is carried out, that is, each curve F is 

mapped in a representation with 90 features, with representing the coordinates of 

movement. Some sub-datasets are offered in order to support comparisons of results. 

Table 5.2 illustrates the dataset specifications. 

Table 5. 2 Libras Movement dataset specification 

Dataset Characteristics:   
Multivariate, 

Sequential 
Number of Instances: 360 

Attribute Characteristics: Real Number of Attributes: 91 

Associated Tasks: 
Classification, 

Clustering 
Missing Values? NO 

 

Attribute Information: 1-91 
90 numeric (double) and 1 for the class 

(integer) 

 

 

Figure 4.2: Swing (Curved, horizontal, and vertical). 
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 Weblogs dataset:  

Weblogs dataset [40] is real with two dimensions; it is suitable to describe the 

performance of K-means when dealing with datasets containing clusters with different 

complex shapes and sizes. The datasets contain two metadata of weblog entries: number 

of visits and purchase. Figure 4.3 shows the dataset point distribution. The datasets had 

been gathered by crawling from the WWW. Table 5.3 illustrates the dataset 

specifications. 

Table 5.3 Weblogs dataset specification 

Dataset Characteristics:   Multivariate Number of Instances: 192 

Attribute Characteristics: Integer Number of Attributes: 3 

Associated Tasks: 
Classification, 

Clustering 
Missing Values? NO 

 

Attribute Information: 
1.  Number of visits 

2.  Number of purchase 

 

 

Figure 4.3: illustration of Weblogs dataset. 

 

 

 Image_Extraction dataset:  

This dataset is simplified extraction of local image features. It takes image data as input 

and returns a dataset with feature vectors computed from image blocks on a regular grid 

as exhibited in Figure 4.4. The dataset consists of samples from each of two species of 

image. Table 5.4 illustrates the dataset specifications. 
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Table 5.4 Image_Extraction dataset specification 

Dataset Characteristics:   Multivariate Number of Instances: 200 

Attribute Characteristics: Integer Number of Attributes: 2 

Associated Tasks: Clustering Missing Values? NO 

 

Attribute Information: 
1.  Image ID 

2.  Color 

 

 

Figure 4.4: Illustration of Image_Extraction dataset 

 

 

 Mammographic Mass Dataset:   

The most effective method for breast cancer screening available today is Mammography 

(illustrated in Figure 4.5). However, the low positive predictive value of breast biopsy 

resulting from mammogram interpretation leads to approximately 71% unnecessary 

biopsies with benign outcomes. To reduce the high number of unnecessary breast 

biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the 

last years. These systems help physicians in their decision to perform a breast biopsy on 

a suspicious lesion seen in a mammogram or to perform a short term follow-up 

examination instead. This dataset can be used to predict the severity (benign or 

malignant) of a mammographic mass lesion from BI-RADS attributes and the patient's 

age.  It contains a BI-RADS assessment, the patient's age and three BI-RADS attributes  

together with the ground truth (the severity field) for 516 benign and  445 malignant 

masses that have been identified on full field digital mammograms  collected at the 

Institute of Radiology of the  University Erlangen-Nuremberg between 2003 and 2006. 

Each instance has an associated BI-RADS assessment ranging from 1 (definitely benign) 
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to 5 (highly suggestive of malignancy) assigned in a double-review process by 

physicians. Assuming that all cases with BI-RADS assessments greater or equal a given 

value (varying from 1 to 5), are malignant and the other cases benign, sensitivities and 

associated specificities can be calculated. These can be an indication of how well a CAD 

system performs compared to the radiologists. Table 5.5 illustrates the dataset 

specifications. 

 

Table 5.5 Mammographic Mass dataset specification 

Dataset Characteristics:   Multivariate Number of Instances: 961 

Attribute Characteristics: Integer Number of Attributes: 6 

Associated Tasks: 
Classification, 

Clustering 
Missing Values? YES 

Area Life   

 

Attribute Information: 

“Attributes in total (1 goal 

field, 1 non-predictive, 4 

predictive attributes) ” 

1.  
BI-RADS assessment: 1 to 5 (ordinal, non-

predictive!) 

2.  Age: patient's age in years (integer) 

3.  
Shape: mass shape: round=1 oval=2 lobular=3 

irregular=4 (nominal) 

4.  

Margin: mass margin: circumscribed=1 

microlobulated=2 obscured=3 ill-defined=4 

spiculated=5 (nominal) 

5.  
Density: mass density high=1 iso=2 low=3 fat-

containing=4 (ordinal) 

6.  
Severity: benign=0 or malignant=1 

(binominal, goal field!) 

Missing Attribute Values: 

1.  BI-RADS assessment: 2 

2.  Age: 5 

3.  Shape: 31 

4.  Margin: 48 

5.  Density: 76 

6.  Severity: 0 
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Figure 4.5: illustration of Mammographic Mass. 

 

Table 5.6 presents a summary of artificial datasets used in this thesis while Table 5.7 

presents a summary of real datasets. The details of each dataset are described. 

 

Table 5.6 summary of all artificial datasets information 

Datasets Name clusters 
Point 

number 
type dimension 

Ruspini 4 75 Real 2 

Rfivec 5 135 Real 2 

Rnoisy 6 188 Integer 2 

Ground_Seperation 6 479 Integer 2 

Separation_2Circle 2 337 Integer 2 

Document_Sim 5 200 Integer 2 

Aggregation 7 788 Real 2 

 

Table 5.7 summary of all Real datasets information 

Datasets Name clusters 
Point 

number 
type dimension 

IRIS 3 150 Real 3 

Libras Movement 15 360 Real 90 

Web Log 3 192 Real 3 

Image_Extraction 2 200 Real 2 

Mammographics_Mass 2 961 Real 6 
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5.2   Cluster Validity Measures and Experiments Environment 

Evaluation of clustering results sometimes is referred to as cluster validation. There have 

been several suggestions for a measure of quality of clustering algorithms. Such a 

measure can be used to compare how well different clustering algorithms perform on a 

set of data. These measures are usually tied to the type of criterion being considered in 

assessing the quality of a clustering algorithm [44]. 

 

5.2.1 Measuring clustering validity 

 External validity:  

In external validity, clustering results are evaluated based on already clustered 

data such as known class labels and external benchmarks. Such benchmarks consist of a 

set of pre-classified items, and these sets are often created by human (experts). Thus, the 

benchmark sets can be thought of as a gold standard for evaluation. These types of 

evaluation methods measure how close the clustering is to the predetermined benchmark 

classes. In summary, external evaluation measures similarity of clustering against known 

class labels. 

 

 Internal validity:   

When a clustering result is evaluated based on the data that was clustered itself, 

this is called internal validity. These methods usually assign the best score to the 

algorithm that produces clusters with high similarity within a cluster and low similarity 

between clusters. One drawback of using internal criteria in cluster evaluation is that high 

scores on an internal measure do not necessarily result in effective information retrieval 

applications. In summary, internal validity measure the goodness of a clustering without 

any external information just like Sum of Squared Error (SSE), Akaike Information 

Content score (AIC), The Bayesian Information Criterion (BIC), and Sum Of Average 

Pairwise Similarities (SAPS):. 

 

Researcher evaluates the effectiveness of proposed clustering algorithms by the 

following internal evaluation measurement algorithms:  

 Sum of Square Errors (SSE): [45] SSE is the simplest and most widely used 

criterion measure for clustering. For a given cluster; SSE is computed as follows: 

for each instance in the cluster; summing the square differences between each 
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attribute value and the corresponding one in the cluster centroid. These are 

summed up for each instance in the cluster and for all clusters. The formula for 

SSE for one cluster is: 

SSE = ∑(xi − xc)

n

i=1

 

Where n is the number of observations xi is the value of the ith observation and xc 

is the mean of all the observations. 

 

 Akaike Information Content (AIC) score: [46] [47] is a measure of the relative 

quality of a statistical model, for a given set of data. As such, AIC provides a 

means for model selection. AIC is founded on information entropy: it offers a 

relative estimate of the information lost when a given model is used to represent 

the process that actually generates the data. AIC deals with the trade-off between 

the complexity of the model and the goodness of fit of the model. AIC measures  

the  log-likelihood  of  the  model  penalized  by  the  number  of  parameters  in 

the  model.  A clustering result with small   K   and small variance of each cluster 

will have a relatively low AIC score, which means the clustering result is good. In 

the general case, the formula for AIC is: 

AIC = 2k − 2 ln(L)  

Where k is the number of parameters in the statistical model, and L is the 

maximized value of the likelihood function for the estimated model. 

 

 The Bayesian Information Criterion (BIC): [48] BIC proposed by Schwarz 

(1978) is a popular method for model selection. BIC evaluates candidate models 

with different number of basic functions, and the optimal number is chosen from 

the best model in terms of BIC score. The formula for the BIC is: 

BIC = 2 ∗ ln(k) + k ∗ ln(n) 

Where n is equal to sample size, k is the number of parameters in the statistical 

model, and L is the maximized value of the likelihood function for the estimated 

model. 

(4.1) 

 

(4.2) 

 

(4.3) 
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 Sum of Average Pairwise Similarities (SAPS): [49] The average pairwise 

difference within a population can be calculated as the sum of the pairwise 

differences divided by the number of pairs. 

 

5.2.2 Experiments Environments  specification 

The experiments are performed on a laptop with {Intel core i5 i5-3210m / 2.5 ghz 

( 3.1 ghz )( dual-core )} processor and 6 gigabyte memory running Microsoft windows 

8 professional 64-bit edition operating systems. Java programing language (JavaTM 

Platform, Standard Edition Development Kit (JDKTM)) is used to code the algorithms.  

 

5.3   Performance Evaluation of DMIK-Means Algorithm 

To test performance of “DIMK-means” the researcher used internal validity with selected 

datasets, then, the tests results were compared with standard k-mean algorithm. 

 

5.3.1 Datasets selection  

The performance evaluation of DIMK-means is applied on five different artificial and 

real-world datasets (Ruspini, Rfivec, IRIS, and Libras Movement) using popular evaluation 

methods including: Sum of Square Errors (SSE), Akaike Information Content (AIC) and 

The Bayesian Information Criterion (BIC), which were described in the previous sub 

section. The results of such evaluation are compared with standard K-means algorithm 

with random initialization method in order to identify the differences. 

Table 5.8 shows the comparison of standard K-means performance results using the 

random initialization and DIMK-means algorithm, which was applied on the artificial 

datasets described in 5.1.1 subsection.  

From the table 5.8 its observed that DIMK-means algorithm scored smaller values for 

each type of performance measures (SSE, AIC, or BIC) than the results of standard K-

means on both artificial datasets Ruspini, and Rfivec. Which means that DIMK-means 

get high accurate results compared with standard k-means algorithm. The researcher 

observes the difference between the values of the worst and the best case reached by the 

standard K-means algorithm, which initialized with the random method, is very high, 

while in DIMK-means, the gap between the worst and best case is kept to minimum. This 

proves that DIMK-means is more stable than standard K-means and has better results 

working with artificial datasets. 
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Table 5.8 The algorithms mean results of artificial datasets over 30 runs (K is an input 

parameter obtained from user, which represent the number of clusters). 

Dataset  algorithm K SSE AIC BIC 

Ruspini 

K-means 

4 

69878.823

153 

2989.2333

511 

2989.108

201 

DMIK-means 
25712.900

25 

2948.0215

6 

2947.895

195 
 

Rfivec 

K-means 

5 

630730.32

154 

6583.4986

813 

6583.628

358 

DMIK-means 
473906.42

563 

6567.4043

256 

6567.535

321 
 

 

Table 5.9 also shows the comparison of initial cluster centroids computed using DIMK-

means and standard K-means algorithms, which were applied on the real datasets 

described before. 

From the table 5.9 its observed that DIMK-means algorithm scored smaller values for 

each type of performance measures (SSE, AIC, or BIC) than the results of standard K-

means on both real world IRIS, and Libras Movement datasets. This mean that DIMK-

means get high accurate results compared with standard k-means algorithm when 

working on both type of datasets real world and artificial datasets. However, the results 

of DIMK-means are pretty good since the difference between the values of the worst and 

the best case for Iris, and Libras Movement datasets, is kept to minimum, while the value 

reached by the standard K-means algorithm, is very high. This proves that DIMK-means 

is more stable than standard K-means and has better results working with real world 

datasets. 

Table 5. 9 The algorithms mean results of real datasets over 30 runs (K is an input parameter 

obtained from user, which represent the number of clusters) 

Dataset  algorithm K SSE AIC BIC 

IRIS 

K-means 

3 

223.37357

47 

9926.5726

73 

9926.748

764 

DMIK-means 
171.15360

34 

9903.9967

37 

9904.172

828 
 

Libras 

Movement 

K-means 

15 

678.06303

13 

2109578.5

18 

2109577.

961 

DMIK-means 
649.18213

75 

2087765.6

09 

2087765.

052 
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Experiments show that our proposed method is more efficient and stable than standard 

K-means algorithms. That DIMK-means algorithm scored smaller values for each type 

of performance measures (SSE, AIC, or BIC) than the results of standard K-means. In 

addition, usually DIMK-means leads to SSE values close to or less than the minimum 

SSE values obtained from standard K-means. This proves that the proposed method is 

more stable than the random method and has better results confirming the need for a 

stable initialization method. 

 

To prove the efficiency of DIMK-means, the graph of the artificial datasets visually 

illustrates a comparison between the results of the standard K-means and DIMK-means 

algorithms as Figures 4.6 and 4.7 show the results of running the two algorithms with 

Ruspini dataset, which consists of four clusters.  

 

 
Figure 4.6:  Results of running the standard K-means with k=4 and using 4 different starting 

points, each randomly chosen from the dataset 
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Figure 4.7:  Results of running DIMK-means with k=4 and using 4 different starting points, 

each chosen with the proposed initialization method. 

 

In Figure 4.6 and 4.7, each identified cluster was demonstrated using a different plotting 

character and color. Note the widely divergent results where it is observed that the 

random method for initialization in standard K-means gets inefficient results as it merges 

2 clusters together (which are plotted as red square in Figure 4.6) and split one of the true 

clusters to two different clusters (plotted with blue circles and green dots in Figure 4.6). 

While the proposed DIMK-means algorithm is more efficient and accurate in identifying 

each cluster very close to the true ones. 

 

Figures 4.8 and 4.9 show the results of running the standard K-means and DIMK-means 

algorithms respectively with Rfivec dataset which consists of five clusters.  

like the previous figures, it is observed that the random method for initialization in 

standard K-means gets inefficient results as it merges 2 clusters together (which are 

plotted as blue circle in Figure 4.8), splits one of the true clusters to tow different clusters 

(plotted with red square and pink oblong in Figure 4.8) and merges subset of cluster with 

another one (plotted with yellow cube in Figure 4.8). While DIMK-means is more 

efficient and accurate in identifying each cluster very close to the true ones as shown in 

Figure 4.9. 
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Figure 4.8:  Results of running the standard K-means with k=5 and using 5 different starting 

points, each randomly chosen from the dataset. 

 

 

Figure 4.9: Results of running DIMK-means with k=5 and using 5 different starting points, 

each chosen using the proposed initialization method. 
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5.4   Performance Evaluation of DSMK-Means Algorithm 

To test the performance of “DSMK-means” algorithm, the researcher here introduces the 

datasets used in the test and reviews the results of the experiments, comparing the results 

with standard K-means algorithm and “BNAK-Divide-and-Merge Clustering Algorithm 

(BNAKDAM) [36]”. 

 

5.4.1 Datasets Selection  

The performance evaluation of DSMK-means algorithm is applied on nine different 

artificial and real-world datasets (Ground_Separation, Separation_2Circle,  Rnoisy, 

Aggregation, Document_Sim, Weblogs, Image_Extraction, and Iris). Furthermore, the 

performance of DSMK-means algorithm is evaluated using popular internal clustering 

validity indices, which employed to evaluate the clustering results, such indices include: 

Sum of Square Errors (SSE), Akaike Information Content (AIC), The Bayesian 

Information Criterion (BIC), and Sum of Average Pairwise Similarities (SAPS); which 

were described in the previous section. The results of such evaluation are compared with 

standard K-means and BNAKDAM algorithms in order to identify the differences. 

Table 5.10 and Table 5.11 show the comparison of the three clustering algorithms: 

Standard K-means, BNAKDAM, and proposed DSMK-means algorithm.  

Table 5.10 shows the comparison applied on the artificial datasets described in 5.1.1 

subsection, while Table 5.11 shows the comparison applied on the real datasets described 

before in 5.1.2 subsection. 

 

Table 5. 10 Clustering algorithms mean results of artificial datasets over 50 runs (K is an input 

parameter obtained from user, which represent clusters number). 

Dataset  algorithm K SSE AIC BIC SAPS 

Ground_Separ

ation 

K-means 

6 

2855774.813 21565.0806 21565.74618 447.3896701 

BNAKDAM 4845704.853 21528.5757 21529.24129 439.9237214 

DSMK-

means 
6159061.753 21494.59273 21495.25831 435.4722115 

 

Separation_2C

ircle 

K-means 

2 

1646936.594 14267.35041 14267.87804 333.0847394 

BNAKDAM 2154097.931 14254.68015 14255.20778 328.7270521 

DSMK-

means 
2577578.554 14253.17946 14253.70709 325.1817196 

 

Document_Si

m 

K-means 

5 

1306929.15 14744.83774 14745.38305 342.5543868 

BNAKDAM 858283.6622 14586.10662 14586.65193 341.2153644 

DSMK-

means 
563265.0873 14480.64838 14481.19369 339.6457059 
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Dataset  algorithm K SSE AIC BIC SAPS 

Rnoisy 

K-means 

6 

1486294.884 21177.29713 21177.57129 183.0293608 

BNAKDAM 865616.0755 19627.6786 19727.92254 172.2823015 

DSMK-

means 
601464.5215 19143.84816 19144.07983 167.9597529 

 

Aggregation 

K-means 

7 

23875.26004 49524.31143 49525.20795 771.7122547 

BNAKDAM 24395.60533 49454.00687 49454.90339 772.9397117 

DSMK-

means 
25387.49156 49358.04323 49358.93976 769.6763346 

 

It is observed from the experiment results on artificial datasets described in Table 5.10, 

that DSMK-means has the best results among the other two algorithms in  AIC, BIC, and 

SAPS indices, while it did not have the best results with SSE index. The reason of the 

SSE high score in DSMK-means algorithm depends on that the shape of cluster, as SSE 

sums the square differences between each attribute value and the corresponding one in 

the cluster centroid. In another example, SSE results for the Separation_2Circle dataset 

using standard K-means algorithm as shown in Figure 4.10.(A) were lower than the 

results using DSMK-means as in Figure 4.10.(F,E). It is known that the lower SSE score 

is the better, but in this case it is visually clear that Figure 4.10.(A) -which obtained lower 

SSE value- is very bad clustering result compared to the resulting cluster of DSMK-

means. This observation indicates the SSE score can not be used to judge the clustering 

accuracy in cases of complex shapes. While the other indices give more accurate 

indication for the best clustering results. 

 
Table 5. 11 Clustering algorithms mean results of real datasets over 30 runs (K is an input 

parameter obtained from user, which represent the number of clusters) 

Dataset algorithm K SSE AIC BIC SAPS 

Weblogs 

K-means 

3 

1001992.83 8670.09057 8670.369323 187.3771721 

BNAKDAM 1326821.065 8747.432511 8747.711265 187.8597177 

DSMK-

means 
1552251.178 8631.13863 8600.417384 186.1648071 

 

Image_Extract

ion 

K-means 

2 

1799087.147 9185.98039 9186.28142 191.6552485 

BNAKDAM 2991817.961 9305.285303 9305.586333 184.5466748 

DSMK-

means 
3634144.897 9069.956687 9070.257717 180.7335421 

 

IRIS 

K-means 

3 

223.37357471 9926.572673 9926.748764 149.5602358 

BNAKDAM 162.35621565 9912.365894 9950.464253 149.5591551 

DSMK-

means 
158.28685748 9899.236799 9899.4128911 149.5536856 
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It is observed that DSMK-means algorithm scores smaller values for each type of 

clustering validity indices (SSE, SAPS, AIC, and BIC) where the sometimes, DSMK-

means algorithm scores big values for clustering validity index (SSE). The value of 

measurement algorithm depends on the nature of algorithm formula and datasets clusters 

shapes, however DSMK-means could identify clusters with different complex shapes 

that may increase the result of SSE index while decrease the rest of indices results. 

Obviously, the clustering results of the DSMK-means clustering algorithm perform best 

compared to k-means and BNAKDAM clustering algorithms. 

 

To prove the efficiency of DSMK-means algorithm, the graph of datasets is shown to 

make a comparison between the results of the standard K-means and DSMK-means 

algorithm. The BNAKDAM results were not shown here as they were similar to the 

graphs in Figure 4.10.(A,B,C). 

 

 Interpreting and compare results of DSMK-means And K-means algorithms 

with Separation_2Circle dataset: 

The Separation_2Circle is composed of two different clusters with different shapes. In 

Figure 4.10, the results show that the DSMK-means can detect both clusters with 

different shapes and sizes while the standard K-means cannot deal with this kind of 

dataset.  

Each cluster identified by a different plotting character and color. It is observed that the 

standard K-means get inefficient results as it split the inner circle true cluster into two 

different groups as well as the outer circle; and merged each part of the inner circle with 

another part from the outer circle. It’s observed that standard K-means always get the 

same results with this dataset which are very bad results (which are plotted as red square 

and blue circle in Figure 4.10.(A)). While the proposed DSMK-means algorithm gets 

more efficient and accurate results in identifying each cluster very close to true ones. It 

is worth mentioning that the results in Figure 4.10.( E and F) are the most common case 

in the results of the algorithm. 
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Figure 4.10: Results of running K-means and DSMK-means algorithms with K=2, on 

Separation_2Circle dataset. 

 

A. Standard K-means B. DSMK-means 

D. DSMK-means 

E. DSMK-means F. DSMK-means 

C. DSMK-means 
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 Interpreting and compare results of DSMK-means And K-means algorithms  

with Image_Extraction dataset: 

Figure 4.11 shows the results of running standard K-means and DSMK-means algorithms 

with Image_Extraction dataset, which consists of two clusters. 

It is observed that the standard K-means gets inefficient results as it splits the stripe-

shaped cluster (which is plotted as red square in Figure 4.11.(B)) to two different groups 

(which are plotted as red squares and blue circles in Figure 4.11.(A)). Such results were 

repeated each time the standard K-means algorithm was applied to the same dataset. 

While the proposed DSMK-means algorithm gets more efficient and accurate results in 

identifying each cluster very close to the true ones.  

 

 
Figure 4.11: Results of running K-means and DSMK-means algorithms with K=2, on 

Image_Extraction dataset. 

A. Standard K-means 

B. DSMK-means 
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 Interpreting and compare results of DSMK-means And K-means algorithms 

with Ground_Separation dataset: 

Figure 4.12 shows the results of running the K-means and DSMK-means algorithms with 

Ground_Separation dataset, which consists of 6 clusters. The shape of this dataset is one 

of the most complicated shapes to be tested on standard K-means, which is can not 

provide accurate clustering results that are close to the true clusters. 

It is observed that the standard K-means get inefficient results as it split the ring-shaped 

cluster (which is plotted in Figure 4.12.(A)) into two different groups, one of them was 

identified as single cluster, while the other was merged with one of the circle-shaped 

clusters in the left-bottom corner.  

On the other hand, the proposed DSMK-means algorithm get more efficient and accurate 

results in identifying each cluster very close to the true ones (which are plotted in Figure 

4.12.(B)). 

 

  
Figure 4.12: Results of running K-means and DSMK-means with k=6, with Ground_Separation 

dataset. 

A. Standard K-means 

B. DSMK-means 
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 Interpreting and compare results of DSMK-means And K-means algorithms 

with Aggregation dataset: 

Figure 4.13 shows the results of running standard K-means and DSMK-means algorithms 

on Aggregation dataset that consists of seven clusters . 

The Aggregation is composed of seven different clusters with different shapes, which are 

not well separated. In Figure 4.13.(A) the results show that standard K-means algorithm 

could not identify the truce clusters as in it split one of the true clusters (in Figure 4.13.(A) 

right image) into three different clusters. 

DSMK-means algorithm could detect the true clusters with different shapes and sizes as 

shown in Figure 4.13.(B). 

 

  
Figure 4.13: Results of K-means and DSMK-means with k=7, on Aggregation dataset. 

 

Finally, DSMK-means algorithm is in general an improved clustering algorithm based 

on standard K-means. It consists of two main stages: split and merge stage, and anti-

noise stage; these stages enable the algorithm to detect different clusters with different 

shapes, sizes and densities. Moreover, DSMK-means is robust to noises. Experiments 

demonstrate that DSMK-means clustering algorithm outperforms the traditional K-

means and BNAKDAM clustering algorithms.  

A. Standard K-means Results 

B. DSMK-means Results 
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5. Conclusion  

5.1   Conclusion  

5.2   Future Work 
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Chapter 5 
5. Conclusion 

This Chapter summarizes the thesis, discusses its findings and contributions, points to 

limitations of the current work, and also outlines directions for future research. 

 

 

6.1   Conclusion 

In  this  thesis,  researcher  have  introduced  two  new  clustering  algorithm: DIMK-

means “Distance-based Initialization Method for K-means clustering algorithm”, and 

DSMK-means “Density-based Split-and-Merge K-means clustering Algorithm”.  

DIMK-means algorithm presents a new way to select initial centroids in K-means 

algorithm. This initialization method is as fast and as simple as the K-means algorithm 

itself, which makes it attractive in practice. The main reason of this enhancement is to 

make K-means less sensitive to the initialization process and to get consistent results 

every time algorithm runs. Experimental results demonstrate that the modification 

appears to give efficient performance when dealing with several virtual and real-world 

datasets, and it is observed that the proposed method has substantially outperformed the 

standard K-means in terms of both speed and accuracy. 

 DSMK-means algorithm developed from k-means which suffers from 

unsatisfactory accuracy when the dataset contains clusters with different complex shapes, 

sizes, noise and/or outliers. DSMK-means included Split and Merge technique, which 

are proposed to overcome standard K-means merging, or splitting true clusters when 

working with datasets contains clusters with different complex shapes. In addition, 

DSMK-means included Anti-noise technique, which was proposed to overcome the 

sensitivity of standard K-means algorithm to noise. DSMK-means algorithm includes 

solutions for cluster with complex shapes and datasets with noisy objects. Experimental 

results demonstrate that the algorithm gives efficient performance when dealing with 

several virtual and real-world datasets, and it is observed that the proposed method is 

able to define clusters with different shapes that K-means cannot define such clusters. 



www.manaraa.com

84 

 

 

6.2   Future Work 

The results of this thesis point to several interesting directions for future work, which 

should be addressed and further developed to acquire better results with less cost, these 

points include the following: 

 

 Develop new techniques to identify most suitable initial centroids  

 Improve DIMK-means algorithm through getting rid of the assumption of equal 

number of objects in each cluster of any given dataset. 

 The future work can be focused on reducing the time and computation complexity 

of DSMK-means algorithm. 

 Merging DIMK-means and DSMK-means algorithms into one comprehensive 

algorithm with reduced  

 Develop a new technique to identify the number of clusters (K) automatically is 

one of the interesting challenges as parameter (K) has to be chosen subjectively 

in standard K-means algorithm instead of having it as an input parameter. 
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