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Enhancing and Combining a Recent
K-means Family of Algorithms for Better Results
Raed T. Aldahdooh

ABSTRACT

Clustering is widely used to explore and understand large collections of data. K-means
clustering method is one of the most popular approaches due to its ease of use and
simplicity to implement. In this thesis, the researcher introduces Distance-based
Initialization Method for K-means clustering algorithm (DIMK-means) which is
developed to select carefully a set of centroids that would get high accuracy results
compared to the random selection of standard K-means clustering method in choosing
initial centroids, which gets low accuracy results. This initialization method is as fast and
as simple as the K-means algorithm itself with almost the same low cost, which makes it
attractive in practice.

The researcher also Introduces Density-based Split- and -Merge K-means clustering
Algorithm (DSMK-means) which is developed to address stability problems of K-means
clustering, and to improve the performance of clustering when dealing with datasets that
contain clusters with different complex shapes and noise or outliers.

Based on a set of many experiments, this research concluded that the developed
algorithms are more capable to finding high accuracy results compared with other
algorithms especially as they can process datasets containing clusters with different
shapes, densities, non-linearly separable, or those with outliers and noise. The researcher
chose the experiments datasets from artificial and real-world examples off the UCI

Machine Learning Repository.

Keywords:
Clustering, K-Means Algorithm, DIMK-means, Cluster Centroid Initialization, Initializing K-
Means, K-Means Seeding Technique, DSMK-means, Split and Merge K-means, Density Based

K-means, K-means stability, anti-noise K-mean
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Chapter 1

1. Introduction

This Chapter introduces some necessary background where it identifies simple historical
overview of clustering, then explores some important topics, which are: (1) Cluster
analysis definition, explanation of its goal and illustration of its difficulty, (2) Definition
of terms used throughout the thesis, (3) Researcher motives to carry the research. In

addition, the Chapter discusses the thesis contribution.

1.1 Historical Remark

Clustering is a discipline aimed at revealing groups, or clusters, of similar entities
in data. The existence of clustering activities can be traced a hundred years back, in
different disciplines in different countries. In the mid-18th century, in London during
cholera outbreak, John Snow had plotted the diseased reported cases using a special map.
A key observation, after the creation of the map, was the close association between the
density of disease cases and a single well located at a central street. Without the map; it
was very difficult to identify the association between the diseased and their locations.
This was the first known application of clustering analysis for many researchers [1].

Since then, cluster analysis consider to be the most popular tool in statistical data
analysis which is widely applied in a variety of scientific areas such as data mining,
pattern recognition, geographic information systems, information retrieval, microbiology
, psychology and other social sciences , in order to identify natural groups in large
amounts of data [2] [3].

1.2  What Cluster Analysis Is?

Many definitions of clusters exist. In general terms, Cluster analysis is an
important unsupervised learning technique where a set of patterns usually represented as
a vector of measurements, or a point in a multidimensional space, is used for identifying
groups (clusters) of similar characteristics, Literature review reveals researchers interest

in the development of efficient clustering algorithms in a variety of real-life situations,
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as indicated by the increase in the number of publications involving this subject in major
conferences and journals.

In other terms Morgan Kaufmann define cluster analysis or simply clustering as the
process of partitioning a set of data objects or observations) into subsets. Each subset is
a cluster, such that objects in a cluster are similar to one another, yet dissimilar to objects
in other clusters. The set of clusters resulting from a cluster analysis can be referred to as
a clustering. In this context, different clustering methods may generate different
clustering’s on the same dataset. The partitioning is not performed by humans, but by the
clustering algorithm. Hence, clustering is useful in that it can lead to the discovery of
previously unknown groups within the data [4]. This definition compared to other
definition is a general one while the terms segmentation and partitioning are sometimes
used as synonyms for clustering, these terms are frequently used for approaches outside
the traditional bounds of cluster analysis. For example, the term partitioning is often used
in connection with techniques that divide graphs into sub graphs and that are not strongly
connected to clustering. Segmentation often refers to the division of data into groups
using simple techniques; e.g,. an image can be split into segments based only on pixel
intensity and color, or people can be divided into groups based on their income.
Nonetheless, some work in graph partitioning and in image and market segmentation is
related to cluster analysis [5].

The term “clustering” is most popular and used in several research communities to

describe methods for grouping of unlabeled data.

1.3  Definitions
The following terms are used throughout the thesis:

e Dataset: A dataset is a collection of data, usually presented in tabular form. Each
column represents a particular (variable, or attribute). Each row corresponds to a
given member of the dataset called (object, or point).

e A Cluster: is a well-defined collection of objects, which are “similar” among
itself and are “dissimilar” to the objects from other clusters.

o Well-Separated Clusters: Clusters where each object in a cluster is closer
“similar” to every other object in the same cluster than to any object in other
clusters. Figure 1.1 show three well-separated clusters of two-dimensional

objects.
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Three well-separated clusters
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Figure 1.1 : Three well-separated clusters of two-dimensional objects.

Centroid or prototype: A objects in a cluster is called a centroid when it is

located in the center of the cluster; this point can be identified as the average of

all the objects in the cluster, or the Medoid, which is the most “representative”

point of the cluster.

Prototype-Based “Center-based” Clusters: A cluster is center-based when its

objects are closer “more similar” to its “center”, than to the center of any other

cluster. Figure 1.2 show four centroid-based clusters of two-dimensional objects.

Four center-based clusters
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Figure 1.2: Four center-based clusters of two-dimensional objects.

Contiguous Cluster (Nearest neighbor or Transitive Clustering): The cluster

where its object is closer (or more similar) to one or more other points in the

cluster than to any point not in the cluster. Contiguous clusters of two-

dimensional objects are shown in Figure 1.3.

Eight contiguous clusters
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Figure 1.3: Eight contiguous clusters of two-dimensional points.
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e Density-based clusters: A cluster is a dense region of points, which is separated
by low-density regions, from other regions of high density. Density-based

clusters of two-dimensional objects are shown in Figure 1.4.

Six dense clusters
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Figure 1.4: Six clusters of two-dimensional points.

e Exclusive (hard or crisp) clustering: each data object can only exist in one
cluster.

e Overlapping: allows data objects to be grouped in 2 or more clusters.

e A Fuzzy clustering: assigns each object to each cluster with a certain degree of
membership.

e Complete clustering: assigns every object to a cluster.

e Partial clustering: allows some data objects to be left alone.

e Cluster Seed: First centroid of a cluster which is defined as the initiator of that
cluster.

e Outlier / Noise: We can identify Outlier as a noisy observation (objects or
points), which does not fit to the assumed model that generated the data.
Alternatively, in other definition, outliers are considered as observations that
should be removed in order to make clustering more reliable.

e Noisy Dataset: is a dataset whose data records inaccurately represent some is
meaningless data records.

e Density area or unit: an area is considered dense or not based on a value defined
by the number of its neighbor points “MinPts” within a given radius “€”. Such
radius and MinPts are calculated dynamically.

e A distance measure (a specialization of a proximity measure): is a metric (or

quasi-metric) on the feature space used to quantify the similarity of patterns.
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e The complete linkage clustering (or the farthest neighbor method): is a
method of calculating and finding maximum distance between a pair of objects
one in one cluster, and one in the other.

e The single linkage clustering (nearest neighbor or shortest distance): is a
method of calculating and finding minimum distance between a pair of objects
one in one cluster, and one in the other “closest objects”.

e Data Types and Scales: The attributes of the objects can be of different data
types and can be measured on different data scales. Data scales and types are
important since the type of clustering used often depends on the data scale and
type.

o The different types of attributes are
i. Binary (two values)
ii. Discrete (a finite number of values)
iii. Continuous (an effectively infinite number of values)
o The different data scales are
I. Qualitative
(1) Nominal — the values are just different names.
(2) Ordinal — the values reflect an ordering, nothing more.
ii. Quantitative
(3) Interval — the difference between values is meaningful, i.e., a unit
of measurement exits.
(4) Ratio — the scale has an absolute zero so that ratios are

meaningful.

1.4 Research Questions

The research questions addressed in this thesis include:

1. Could we improve recent K-means analysis by making it less sensitive to noise,
cluster shape, and data size?

2. How can we improve recent K-means algorithms initialization process, which
has big impact on algorithms results?

3. Does the initialization process need to use parameters? Can we make

algorithms determine the parameters depending on the nature of data?
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1.5 Motivation
Data analysis underlies many computing applications, either in a design phase or

as part of their on-line operations. Data analysis procedures can be dichotomized as either
exploratory or confirmatory, based on the availability of appropriate models for the data
source, but a key element in both types of procedures (whether for hypothesis formation
or decision-making) is the grouping, or classification of measurements based on either
(i) goodness-of-fit to a postulated model, or (ii) Natural groupings (clustering) revealed
through analysis [6].
Clustering is useful in several exploratory pattern-analysis, grouping, decision- making,
and machine-learning situations; including data mining, document retrieval, image
segmentation, and pattern classification. It is the process of producing unlabeled
categorized data. However, On trajectory data clustering is a very important data mining
task for a wide variety of application fields including location aware services, geo-
marketing protein analysis etc. Most of traffic planner or Geo-marketer takes interest to
know the most visited place or important place with respect to product promotion; based
on this, clustering is very useful in various applications [7].
K-means is one of the most famous partition clustering algorithms because of: (i) It has
been recently elected and listed among the top ten most influential data mining
algorithms; (ii) it is at the same time very simple and slightly scalable, as it has linear
asymptotic running time with respect to any variable of the problem. K-means clustering
is a method of cluster analysis, which aims to partition n observations (X1, X2... Xn), Where
each observation is a d-dimensional real vector into k clusters in which each observation
belongs to the cluster with the nearest mean. In general, K-means is one of the most
important and best performances of the clustering algorithms. However, there are some
drawbacks for K-means algorithm like sensitivity to the initial cluster centroids, which
is addressed in these references [8] [9]. Moreover, when the number of data points is
large, it takes enormous time to find the global optimal solution [10].
K-means has several limitations which are listed below :

e Scalability: It scales poorly computationally.

e Initial Centroids: The clustering result is extremely sensitive to the initial

centroids.

¢ Noise: Noise or outliers deteriorates the quality of the clustering result.
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e Number of clusters: The number of clusters must be determined before the
means clustering begins.
e Local minima: It always converges to different local minima based on the
initializations process.
e Inability to cluster non-linearly separable dataset: It fails to split non-
linearly separable datasets in the input space.
It is very convenient to classify algorithms based on the relative amount of time or
relative amount of space they require and specify the growth of time/space requirements
as a function of the input size. Thus, The K-means time complexity is O(NKI), (where N
is number of objects, K is the number of clusters , and I is the number of iteration taken
by the algorithm until convergence criterion is satisfied) And its space complexity is
O(K+N), as it requires additional space to store the data matrix. Add to that K-means
order-independent; for a given initial seed set of cluster centers, it generates the same
partition of the data irrespective of order in which pattern are presented to the algorithm.
Because of these characteristics, K-means algorithm is considered as one of the top ten
most influential data mining algorithms, which is one reason that encouraged the
researcher to choose K-means clustering to be the focus of this thesis.
There are a large number of researchers up to this moment try to develop and enhance
K-means algorithm to optimize the performance and overcome algorithm drawbacks.
These reasons and others prompted the researcher to choose this algorithm. However, the
researcher aims at improving the performance of this algorithm by creating new
initialization process “seeding process”, which will contribute to overcome the initial
centroid sensitivity drawback. Moreover, the researcher will combine some of the recent
K-means family of algorithms to optimize the algorithm results and preserve its stability

in addition to reduce its sensitivity towards noise.

1.6 Thesis Contribution

This thesis contributes to the area of pure experimental computer science;
specifically, it introduces novel thinking and techniques to the fields of partition based
clustering techniques. The primary objective of this thesis is to optimize the performance
of K-means clustering algorithm, which is considered as one of the top ten partition based
clustering algorithms in data mining.

The contribution of this thesis is two-fold:
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(1) The researcher will develop a new clustering algorithm called DIMK-means
“Distance-based initialization method for K-means clustering algorithm” that
will be developed to address sensitivity of the algorithm for selecting initial
means “careful seeding”, and reducing the effect of outliers or noise.

(2) Also the researcher will develop another clustering algorithm called DSMK-
means “Density-based Split-and-Merge K-means clustering Algorithm” that will
be developed to address stability of K-means clustering problems, and to decrease
deterioration of the clustering results quality because of cluster shape, size, noise
or outliers.

The researcher will evaluate the proposed algorithms using real and artificial data and
compare algorithms’ results with other famous related algorithms’ results. It is expected
that the results of the proposed algorithms will confirm the high performance of the

proposed methods in both quality and time.

1.7  Organization of The Thesis

This thesis has five chapters, which will give an overview of the thesis where
relevant, the researcher highlights the major issues addressed in the chapters, and what
researcher regards as the key contributions of the work; the following is a brief
description of the content of each chapter:
Following on from this introduction, Chapter 2 reviews the related work, which
discusses the clustering problems and background. The Chapter includes also a
description of standard K-means algorithm, highlights the effects of random selection for
initial cluster centroids, and the effects of different cluster shapes and noise or outlier on
the quality of algorithm results.
Chapter 3 overviews and discusses the new proposed algorithms. Furthermore, it
describes some of the most important terms related to the proposed algorithms. A
summary of the research methodology and design are provided in this chapter.
Chapter 4 illustrates the experiment, its results and the analysis of these results. In
addition, the Chapter explains the means of measuring the algorithm results’ quality and
presents a comparison with other algorithms’ results.
Chapter 5 This final Chapter discusses a general summary and offers conclusions of the

thesis in addition to proposed future
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Chapter 2

2. Literature Review

This Chapter presents necessary background and related work. First, it identifies simple
background overview. Then explores some important topics: (1) requirements for cluster
analysis (scalability, discovery of clusters with arbitrary shape, ability to deal with noisy
data, etc...), (2) defines a categorization of major clustering methods, (3) K-means
algorithm, finally, it discusses related work, which is divided into two main research [i].
Research that addresses K-means initialization methods and [ii]. Research that

addresses K-means stability in results and sensitivity to outliers

2.1 Background

The main goal of clustering is to reduce the amount of data by categorizing or
grouping similar data items based on an underlying measure of similarity. Such grouping
is pervasive in the way human’s process information, and one of the motivations for
using clustering algorithms is to provide automated tools to help in constructing
categories or taxonomies. These methods may also be used to minimize the effects of
human factors in the process [11]. The cluster Analysis has been used for the following
three main purposes [12].

e Underlying structure: to gain insight into data, generate hypotheses, detect

anomalies, and identify salient features.

e Natural classification: to identify the degree of similarity among forms or

organisms (phylogenetic relationship).

e Compression: as a method for organizing the data and summarizing it through

cluster prototypes.

Clustering is a difficult problem and in order to better understand the difficulty of
deciding what constitutes a cluster, consider Figures 2.1.(a) through 2.1.(d), which show
twenty points and three different ways in which these points can be divided into clusters.

If we allow clusters to be nested, then the most reasonable interpretation of the structure

9
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of these points is that they can be divided into two clusters, each of which has three sub

clusters. However, the apparent division of the two larger clusters into three sub clusters

may simply be an artifact of the human visual system, but it may be reasonable also to

say that the points form four clusters. Thus, we stress once again that the definition of

what constitutes a cluster is imprecise, and the best definition depends on the type of data

and the desired results [13].
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Figure 2.1: Different ways to clustering the same set of points [13].

2.1.1 Requirements for Cluster Analysis

Clustering is a challenging field of research in which its potential applications

pose their own special requirements. Although many researchers defined the

requirements for clustering, Han & Kamber have the most suitable definition of the

requirements that are listed below [4]:

1. Scalability: Many clustering algorithms work well on small datasets containing

fewer than 200 data objects. However, a large database may contain millions of

objects. Clustering on a sample of a given large dataset may lead to biased results.

Highly scalable clustering algorithms are needed.

2. Ability to deal with different types of attributed: Many algorithms are

designed to cluster interval-based (numerical) data. However, applications may

require clustering other types of data, such as binary, categorical (nominal), and

ordinal data, or mixtures of these data types.

3. Discovery of clusters with arbitrary shape: Many clustering algorithms

determined clusters based on Euclidean or Manhattan distance measures.

Algorithms based on such distance measures ‘end to find spherical clusters with

similar size and density’. However, a cluster could be of any shape. It is important

to develop algorithms that can detect clusters of arbitrary shape.

10
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Minimal requirements for domain knowledge of determine input
parameters: Many clustering algorithms require users to input certain
parameters in cluster analysis (such as the number of desired clusters). The
clustering results can be quite sensitive to input parameters. Parameters are often
hard to determine, especially for datasets containing high-dimensional objects.
This not only burdens users, but also makes the quality of clustering difficult to
control.

Ability to deal with noisy data: Most real-world databases contain outliners or
missing, unknown, erroneous data. Some clustering algorithms are sensitive to
such data and may lead to clusters of poor quality.

Insensitivity to the order of input records: Some clustering algorithms are
sensitive to the order of input data; for example, may generated dramatically
different clusters. It is important to develop algorithms that are insensitive to the
order of input.

High dimensionality: A database or a data warehouse can contain several
dimensions or attributes. Many clustering algorithms are good at handling low-
dimensional data, involving only two to three dimensions. Human eyes are good
at judging the quality of clustering for up to three dimensions. It is challenging to
cluster data objects in high-dimensional space, especially considering that such
data can be very sparse and highly skewed.
Constraint-based clustering: Real-world applications may need to perform
clustering under various kinds of constraints. Suppose that your job is to choose
the locations for a given number of new automatic cash-dispensing machines
(ATMs) in a city. To decide upon this, we may cluster household while
considering constraints such as the city’s rivers and highway networks and
customer requirements per region. A challenging task is to find groups of data
with good clustering behavior that satisfy specified constraints.

Interpretability and usability: Users expect clustering results to be
interpretable, comprehensible, and usable. That is, clustering may need to be tied
up with specific semantic interpretations and applications. It is important to study

how an applications goal may influence the selection of clustering methods.

11
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2.1.2 A Categorization of Major Clustering Methods

To satisfy the requirements of clustering; different clustering methods have been
developed, each of which uses a different induction principles, and gives different
grouping of a dataset. Deciding which the most suitable method is depends on the type
of the output desired, the known performance of a certain method with particular types
of data, the hardware and software facilities available, and the size of the dataset. In
general; clustering methods have different categorization, Farley and Raftery (1998)
suggest dividing the clustering methods into two main groups: hierarchical and
partitioning methods. Han and Kamber (2001) suggest categorizing the methods into
additional three main categories: density-based clustering, model-based clustering and
grid-based clustering. An alternative categorization method based on the induction
principles of the various clustering methods is presented in (Estivill-Castro, 2000) [14].
Several studies examine a lot of clustering techniques, of which the researcher found
most efficient categorization techniques are those organized into the following
categories: partitioning, hierarchical, grid-based, density-based, model-based, methods

for high-dimensional data, and constraint-based clustering techniques.

< Partition-based clustering attempts to directly decompose the dataset into a set of
disjoint clusters. The criterion function that the clustering algorithm tries to minimize
may emphasize the local structure of the data, as by assigning clusters to peaks in the
probability density function, or the global structure. Typically, the global criteria
involve minimizing some measure of dissimilarity in the samples within each cluster,
while maximizing the dissimilarity of different clusters. Cluster similarity is
measured in regard to the mean value of the objects in a cluster, center of gravity, (K-
means [15]) or each cluster is represented by one of the cluster objects located near
its center (K-Medoid [16]). The most popular and the simplest partitional algorithm
is K-means. Since partitional algorithms are preferred in pattern recognition due to
the nature of available data, our coverage here is focused on these algorithms. K-
means has a rich and diverse history as it was independently discovered in different
scientific fields. Even though K-means was first proposed over 50 years ago, it is still
one of the most widely used algorithms for clustering. Ease of implementation,
simplicity, efficiency, and empirical success are the main reasons for its popularity
[12].

12
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«» Hierarchical clustering algorithms recursively find nested clusters either in agglomerative
mode (starting with each data point in its own cluster and merging the most similar pair of
clusters successively to form a cluster hierarchy) or in divisive (top-down) mode (starting
with all the data points in one cluster and recursively dividing each cluster into smaller
clusters), agglomerative mode vs. divisive mode are described in Figure 2.2 [12]. In other
terms, hierarchical clustering proceeds successively either by merging smaller clusters into
larger ones or by splitting larger clusters. The clustering methods differ in the rule by which
it decides which two small clusters are merged or which large clusters are split. The end
result of the algorithm is a tree of clusters called a dendrogram, which shows how the clusters
are related. By cutting the dendrogram at a desired level; a clustering of data items into
disjoint groups is obtained; Hierarchical algorithms such as BIRCH [17] and CURE [18].
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Figure 2.2: Agglomerative and divisive clustering
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¢ Grid-based clustering methods make it possible to form arbitrarily shaped, distance
independent clusters. In these methods, the feature space is quantized into cells using
a grid structure. The cells can be merged together to form clusters. Grid-based
clustering was originally based on the idea of Warnekar and Krishna to organize the
feature space containing patterns [19]. Schikuta has used topological neighbor search
algorithm to combine the grid cells to form clusters [20]. CLIQUE [21], named for
Clustering In Quest, is a density and grid-based approach for high dimensional
datasets that provides, automatic sub-space clustering of high dimensional data. Grid-
based algorithms such as STING [22], and WaveCluster [23], are based on multi-
level grid structure on which all clustering operations are performed.
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¢ In Density-based clustering [24], clusters are defined as areas of higher density than the
remainder of the dataset. The most popular density based clustering method is DBSCAN
[25]. In contrast to many newer methods, it features a well-defined cluster model called
"density-reachability”. Similar to linkage based clustering; it is based on connecting points
within certain distance thresholds. However, it only connects points that satisfy a density
criterion, in the original variant defined as a minimum number of other objects within this
radius. A cluster consists of all density-connected objects (which can form a cluster of an
arbitrary shape, in contrast to many other methods) plus all objects that are within these
objects' range. OPTICS [26] is a generalization of DBSCAN that removes the need to choose
an appropriate value for the range parameter a, and produces a hierarchical result related to
that of linkage clustering.

A model-based method hypothesizes a model for each of the clusters and finds the
best fit of the data to that model. Examples of model-based clustering include the EM
algorithm (which uses a mixture density model), conceptual clustering (such as
COBWEB [27]) and neural network approaches (such as self-organizing feature
maps).

% Clustering high-dimensional data is of crucial importance, because in many
advanced applications; data objects such as text documents and microarray data are
high-dimensional in nature. There are three typical methods to handle high
dimensional datasets: dimension-growth subspace clustering represented by
CLIQUE [20], dimension reduction projected clustering, represented by PROCLUS,
and frequent pattern—based clustering, represented by pCluster.

% A constraint-based clustering method groups objects based on application
dependent or user-specified constraints. For example, clustering with the existence
of obstacle objects and clustering under user-specified constraints are typical

methods of constraint-based clustering.

2.1.3 Partition Based Clustering:

A partition clustering algorithm splits the data points into k partitions, where
each partition represents a cluster. The partitioning is done based on certain objective
function. One of the criterion functions is minimizing square error criterion, which is

computed as shown by equation 2.1:
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Where Ck is the set of instances in cluster K; uy is the prototype of cluster k.
Each K cluster must have at least one point and each point must be in one and only one

cluster.

2.1.4 K-Means Algorithm

K-means is one of the most widely used partition-based clustering algorithms in
practice. It is simple, easy, understandable, scalable, and can be adapted to deal with
streaming data and very large datasets [28]. K-means algorithm divides a dataset X into
K disjoint clusters based on the dissimilarities between data objects and cluster centroids.
Let 1, be the centroid of cluster Ci and the distances between Xj that belong to Ci and

is equal to d(X], t,). Then, the objective function minimized by K-means is given by:

K
minE=ZZd X, It
pu. (x;, 1)

Where‘d’ is one of distance function. Typically d is chosen as the
Euclidean or Manhattan distance.

The Euclidean distance between points X and Y is the length of the line segment
connecting them ( XY ). If X and Y are n-dimensional vectors where X= (X1, Xz,..., Xn)

and Y = (y1, Y2,..., ¥n), then the Euclidean distance from X to Y, or from Y to X is given
by:

d(X,Y) -
{d(Y, X)} = Z(Xi —yi)? (2.3)

i=1

The Manhattan distance between two points measured along axes at right angles where
distance that would be traveled to get from one data point to the other if a grid-like path
is followed. In a plane with X at (x1, x2) and Y at (Y2, y2), it is X1 - y1| + | X2 — y2|. The
Manhattan distance between two n-dimensional vectors is the sum of the differences of

their corresponding components.
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d(X,Y) = lei — il (2.4)
i=1

Where n is the number of variables, and Xi and Yi are the values of the ith variable, at

points X and Y respectively.

Usually the selection process between the two methods of calculating the distance is left
to the user based on the nature of the data. Figure 7 shows the difference between using
Euclidean and Manhattan distance to calculating the distance between two points in two-

dimensional space.

Euclidean distance Manhattan distance

Figure 2.3: Euclidean and Manhattan distance between two point in tow-dimensional space.

K-means algorithm working process summarized as follows:
1. Determine the number of clusters (k parameters in k-means).
2. K-means selects randomly k cluster centroids.
3. Assign object to clusters based on distance function.
4. When all objects have been assigned, Re-compute new cluster centroids by
averaging the observations assigned to a cluster.

5. Repeat (3-4) until convergence criterion is satisfied.

Pseudo code for K-means algorithm:

Algorithm 2.1: K-means
Input:  X={xqg,X2,...,xj} (set of entities to be clustered)
K (number of cluster)

MaxlIters (Limit of iterations)

16
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Output: C={uy, i3,.., tx t (set of cluster centroids)
L= (set of cluster labels of X)

k:number of cluster,
t: max number of iteration.

=

Require: k>2 and t > 1 {

Select initial cluster centroids gy, ft5,.., k-
Repeat
For each point x; in a dataset do
For all jr, do
Compute the dissimilarity d(x;, it,);
End for.
assign point x; to closest cluster Cj;
End for.
. For all i, do

© © N o 0o & WD

L
= O

. Update j, as the centroid of cluster Ci;
. End for.

[
w N

. Until convergence criterion is satisfied or the number of iterations exceeds

a given limit t.

The number of clusters found is equal to the number of the initial starting points, which

are specified as input parameters to the clustering algorithm.

2.2 Related Work

K-means clustering algorithm has a very rich history because of its observed
speed and simplicity, in this work the focus is on improving its accuracy. In the following
sub sections, the researchers reviews initialization methods in K-means algorithm in

addition to different research studies that were developed to enhance K-means accuracy.

2.2.1 K-Means Initialization Methods

The initial location of the cluster centroid has major impact on the performance

of K-means algorithm. These effects will be discussed in the following sub section. The
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following are some methods proposed by different researchers that decrease the
sensitivity and increase accuracy of K-means, through selection of the best centroid

locations within the existing dataset.

72

% K-means++: the advantages of careful seeding [29]:

In 2007; David Arthur and Sergei published research titled “K-means++: The
Advantages of Careful Seeding” where they proposed a specific way of choosing initial
centroids. In their proposed method, initial centroids are chosen consecutively with
probability proportional to the distance to the nearest centroid as follows:
1. Choose an initial centroid c1 =x randomly from X.
2. Set D(x) as the shortest Euclidean distance from a data point x to the closest
centroid.

p(x")?
Y D(x)2

3. Choose the next centroid ci, selecting ¢i = x’ € X with probability

4. Repeat steps 2 and 3 until we have chosen a total of K centroids.

5. Proceed as with the standard K-means algorithm.
This seeding method yields considerable improvement in the final error of k-means.
Although the initial selection in the algorithm takes extra time, The authors tested their
method with real and synthetic datasets and obtained typically 2-fold improvements in
speed, and for certain datasets, close to 1000-fold improvements in error. In these
simulations, the new method usually performed at least as well as standards k-means in
both speed and error. In summary K-means++ presented a new way to seed the K-means
algorithm that is O(logk) competitive with the optimal clustering. Where the initialization

needs k passes over the data, which make it does not scale very well to large data sets.

+ Initializing partition-optimization algorithms [30]:

Initializing Partition-Optimization Algorithms proposes a staged approach to specifying
initial values by finding a large number of local modes and then obtaining representatives
from the most separated ones. The researcher propose Amulti-Stage Initializer; the steps
of algorithm are outline below:

Let X be the n x p data matrix with rows given by the observations X = {X1,Xz2 ,...,Xn}.
the algorithm objective is to find initial seeds for partitioning algorithms to group the
dataset into K clusters, assuming that K is known. Consider the following multi-stage
algorithm:
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1. Obtain the singular value decomposition (SVD) of the centered data X"=U DV,
where D is the diagonal matrix of the m positive singular values di >d2 > ...>
dm, and U and V matrices of order n x m and p x m, both with orthonormal
columns (in n-and p dimensional space, respectively). For a given m” consider
the reduced n x m” projection given by U” consisting of the first m” columns of
U given by uz, Uz, ...., Um= . We propose working in the reduced space.

2. For each coordinate in the reduced space, we obtain an appropriate number of
local modes. We choose more modes in those coordinates with higher singular
values (or standard deviations of the principal components), under the
assumption that information in the dataset is more concentrated along those
projections corresponding to higher values, and therefore these would contain
more information about the clusters. Specifically, we propose choosing the

number of modes, kj in the jth reduced-space coordinate to be equal to
[(Cm—m* K)l/m*] d;/dm. rounded to the nearest integer, with [x]denoting the

smallest integer greater than or equal to x, and ck is non-decreasing and concave
in k. They propose one-dimensional k-means to determine the modes in the jth
reduced coordinate data space initialized using the quintiles corresponding to the
kj equal increments in probabilities in (0,1). The choice of k-means is appropriate
because the goal here is to find a large number of univariate local modes for
input into the next step.

3. Form the set of candidate multivariate local modes in the reduced space by
taking the product set of all the one-dimensional modes. Eliminate all those
candidates from the product set which are not closest to any observation in Ux.
The remaining k* modes are used as initial points for a K-means algorithm that
provides us with k* local modes. Note that typically, k*>> k.

4. Obtain the k* local modes of the dataset using the K-means algorithm with the
starting points provided from above. Also, classify the observations, and obtain
the corresponding group means in the original domain.

5. At this point, we have k* local modes of the dataset in the reduced space and the
corresponding group centers in the original space. The goal is to obtain k
representative points from the above, which are as far as possible from each
other. We use hierarchical clustering with single-linkage on these k* modes and

cut the tree into k groups. Since a single-linkage merge criterion combines
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groups based on the least minimum pairwise distance between its members, its
choice in the hierarchical clustering algorithm here means that we obtain k
groups of local modes (from out of k*) that are as far apart in the transformed
space as possible. Means, and if needed, relative frequencies and dispersions, of
the observations in the dataset assigned to each of the k grouped modes are
calculated: these provide the necessary initialization points for the partition-
optimization algorithms.

The main contribution of this research is the development of a computationally feasible

deterministic algorithm for initializing greedy partition-optimization algorithms. The

results on an extensive suite of test experiments and a classification dataset are very

promising. Where, the computation complexity is high.

« Cluster Center Initialization Method for K -means Algorithm Over Datasets
with Two Clusters [31]:

Cluster Center Initialization Method for K-means Algorithm Over Datasets with Two
Clusters defines nearest neighbor pair and puts forward four assumptions about nearest
neighbor pairs, based on which a centroid initialization method for K-means algorithm
over datasets with two clusters is build. The steps of research are outlined below:
Supposing that X={x1,x2,...,Xn} is a dataset, where xj={X1j,X2j,...,Xmj} T .

1. Compute the dissimilarity between any pair of data points in X using formula:

d(xj,xic) = \/ (x5 = %) (35 = %)

2. For any datum point x in X find its nearest neighbor xnn using formulae:

XNN = arg minge x_q{d(x,y)} and constitute a set B of nearest neighbor

pairs

3. Find two most dissimilar nearest neighbor pairs, (X1, X1,nn) and (X2, X2,nN),

using formulas:
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d= ((X, XNN)) (Y» yNN))
d = min{d(a,b)|a € {x,xxn},b € {y,ynn}}

d' = ((X1'X1,NN)' (XZ'XZ,NN))

d’ = max{d((x xnn), (v, ynn))| (% xnn) € B, (v, ynn) € B}

4. Find the third most dissimilar nearest neighbor pairs (X3, X3,nN).

5. Find the fourth most dissimilar nearest neighbor pairs (X4, X4,NN).

6. Find the nearest neighbor pair (Xs, Xsnn) on the overlapping of two clusters..

7. Select two initial cluster centroids according to some assumptions.
Cluster center initialization method CIT devotes to searching two nearest neighbor pairs
that are most dissimilar and in different clusters, but not on the overlapping of two
clusters. The means of each searched nearest neighbor pairs are selected as two initial

cluster centers.

+»* Hierarchical K-means: an algorithm for centroids initialization of K-means [32]:

Hierarchical K-means: an algorithm for centroids initialization for K-means, a new
approach to optimize the initial centroids for K-means proposed. It utilizes all the
clustering results of K-means in certain times, even though some of them reach the local
optima. Then, transform the result by combining with Hierarchical algorithm in order to
determine the initial centroids for K-means. The execution steps of the proposed
Hierarchical K-means algorithm to determine initial centroids for K-means are described
as follows:

1. Set X={xi|i=1,....,r} as each data of A, where A={aj|,i=1,...,n} is attribute
of n-dimensional vector.
Set K as the predefined number of clusters.
Determine p as numbers of computation
Set i=1 as initial counter
Apply K-means algorithm.
Record the centroids of clustering results as Ci= {cij | j=1,....K}
Increment i=i+1

Repeat from step 5 while i<p.

© © N o gk~ w DN

Assume C = { Ci| i=1,...,p} as new dataset, with K as predefined number of
clusters

10. Apply hierarchical algorithm
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11. Record the centroids of clustering result as D = {di | i=1,...,K}
Then, apply D = {di | i=1... K} as initial cluster centroids for K-means clustering. The

experiment results reflect the accuracy of the method.

¢ Efficiency issues of evolutionaryK-means [33]:

Efficiency issues of evolutionary K-means method suggest that evolutionary techniques
conceived to guide the application of K-means can be more computationally efficient
than systematic (i.e., repetitive) approaches that try to get around the K-means drawbacks
by repeatedly running the algorithm from different configurations for the number of
clusters and initial positions of prototypes. To do so, a modified version of a (K-means-
based) fast evolutionary algorithm for clustering is employed. From the theoretical
perspective, the time complexity of all the assessed algorithms has been demonstrated to
be linear with respect to the number of data objects and attributes. This method suggests
that, in principle, all of them are eligible to be employed in real world applications
involving large datasets. Furthermore, this method has shown that well-designed
evolutionary algorithms for clustering are also promising tools for real-world practical
applications in which computational efficiency is of paramount importance.

+» A Deterministic Method for Initializing K-means Clustering [34]:

A Deterministic Method for Initializing K-means Clustering by Ting Su and Jennifer Dy
motivate theoretically and experimentally the use of a deterministic divisive hierarchical
method, which they refer to as PCA-Part (Principal Components Analysis Partitioning)
for initialization. The researchers proposed sorting data instances on a single variable
then performed the initial partition. These partitions are used only in one dimension. An
alternative method is to partition the sample space hierarchically. Starting with one
cluster, then cut it into two. Pick the next cluster to partition, and so on. PCA-Part uses
the latter approach. The performance of K-means depends on the initial condition.
According to researchers, results are encouraging. It presents some promise in initializing

at intelligent starting points for the K-means algorithm, instead of just random start.

% Minkowski metric, feature weighting and anomalous cluster initializing in K-

means clustering [35]:
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A Minkowski metric, feature weighting and anomalous cluster initializing in K-means
clustering by Renato Cordeiro de Amorim and Boris Mirkin represents another step in
overcoming a drawback of K-Means, its lack of defense against noisy features, using
feature weights in the criterion. In this criterion, two modifications of weighted method
are proposed and their competitiveness is experimentally demonstrated. The main
contribution of this research is the extension of the exponent B from the weights in the
original Weighted K-means method to the distances, in the form of Minkowski metric
criterion. This returns the K-means criterion to its original format of summary distances
between entities and their cluster centroids and makes the weights to be the feature
rescaling coefficients. The Minkowski metric criterion does the job: in the experiments,
it consistently improves the accuracy of the Weighted K-means both at the original and
noisy datasets. The issue remaining to be addressed in this regard, as it is with the original
Weighted K-Means, is of determining the right value of f exponent. Applying a semi-
supervised setting by training p on labeled subsamples appears to be a promising
direction. Another possibility would lie in trying to identify characteristics of the data
structures that relate to specific values of . Furthermore, a related contribution of this
paper is the usage of anomalous cluster centers to initialize both centroids and feature
weights in the ““intelligent’’ versions of the Weighted K-Means. This proved effective at

modest to moderate data sizes.

By the end of this subsection, the researcher criticizes most of the researches mentioned
above, where many of these algorithms proposed to solve the sensitivity of K-means to
centroids initialization process that has a direct impact on the formation of final clusters.
Most of the algorithms mentioned above suffer from high computational complexity;
therefore, they do not have strong scalability. This has led the researcher attempt to
develop a new simple and scalable algorithm to decrease the sensitivity of centroids

initialization process.

2.2.2 K-Means Stability in Results and Sensitivity to Outliers

This sub section is mainly concerned with presenting the algorithms that enhance
and improve the performance of K-means. We will review methods that decrease the

sensitivity of algorithm towards outlier or noise, and other related methods.

23

www.manaraa.com



+ BNAK-Divide-and-Merge Clustering Algorithm [36]:

Divide-and-Merge is a methodology for clustering a set of objects that combines a top-
down “divide” method with a bottom-up “merge” method. This algorithm proposes a
normalized cut with automatically determining K clustering algorithm (BNAK-Divide-
and-Merge) based on the Divide-and-Merge. Like the Divide-and-Merge, there are also
two phases in this approach.

i.  Divide phase:

Which is the first phase of Divide-and-Merge Algorithm, applies the spectral clustering
algorithm to form a tree T whose leaves are the objects. A new threshold is proposed and
called minDividedSize in Step 1 to control the number of tree nodes produced by the
divide phase, which can greatly improve the efficiency of the divide phase. In Step 2, D

is the diagonal matrix of the row sums of similarity matrix AsAT.

Pseudo code for dividing phase:

Input: An m nx matrix A and a threshold minDividedSize

Output: A tree whose leaves are subsets of the objects

1. If the size of A is not less than minDividedSize, then go to step 2, else stop.

2. Compute the Laplacian matrix L=D-AsAT.

3. Compute the two smallest eigenvectors Vi and Vi of DL, let V={y1,y2,...yn}"
where V={v1,v2}

4. Partition the samples y1,y2,..,yn by K-means which k=2.

5. Let As,At be the submatrices of A. Recurse (Step 1-4) on As and Ar.

ii.  Merge phase
For a large class of natural objective functions proposed by the merge phase can be
executed optimally when the expected number of clusters (i.e. K) is specified at first.
Alternately, they use the most obvious turning point of K-TSS curve to automatically
determine the value of K . Many inner measurements of the clusters effectiveness are
based on the conception of cohesion and separation. Cluster cohesion (i.e. SSE) is the
sum of the weight of all links within a cluster. Cluster separation (i.e. SSB) is the sum of
the weights between nodes in the cluster and nodes outside the cluster. In some cases,
there is a strong connection between the cohesion and the separation. Specifically, the
sum of SSE and SSB is equal to total sum of squares TSS. TSS is defined as follows:
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TSS=SSE+SSB. They observing that most obvious turning point of the K-TSS curve can

help us determine the expected number of clusters.

This concludes that K-Divide-and-Merge clustering algorithm (BNAK-Divide-and-
Merge) based on the Divide-and-Merge, improves the efficiency and performance of the

clustering.

+ A Modified K-means Algorithm for Noise Reduction in Optical Motion Capture
Data [37]:

A modification to K-means algorithm has been used for removing noise in multicolor
motion capture image sequences. The proposed algorithm takes into account the nature
of the motion capture images in terms of the number of data pixels normally clustered
together and the acceptable degree of compactness of a data cluster. The modified K-
means algorithm is used to clean up the noise embedded in the color regions in each
image by creating clusters of pixels based on their relative spatial positions in the image.
Following the classical K-means algorithm, the Euclidean Distance measure is used to
determine which cluster a pixel belongs to. Each pixel is put into a cluster, which yields
the minimum Euclidean Distance between the pixel and the respective centroid. The
centroid of each cluster is changed iteratively by calculating its new coordinate as the
average of the sum of the coordinates of the pixels in the cluster until it converges to a
stable coordinate with a stable set of member pixels in the cluster. In each iteration, the
memberships of each cluster keep changing depending on the result of the Euclidean
Distance calculation of each pixel against the new centroid coordinates.

Classical K-means algorithm is modified upon the form of constraints on cluster size and
cluster compactness. The value for the cluster size constraint is set just above the number
of data points usually found in a noise cluster for the type of data at hand. The value for
the cluster compactness constraint is set just below the minimum compactness of valid

data clusters.

«» Automatic Cluster Number Selection using a Split and Merge K-means
Approach [38]:
This research address the problem of cluster number selection by using a K-means

approach that exploits local changes of internal validity indices to split or merge clusters.
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There split and merge K-means issues criterion functions to select clusters to be split or
merged and fitness assessments on cluster structure changes.
Assume a set of data samples X ={xu,...,xn} is given, C={cl,...,ck} being the cluster

centroid, the optimization criterion in the research is given as L = Y.\, x{ c,; where

yi = arg max xTc, the hard assignment of samples to cluster is denoted as set

y={y1,...,yn}
= Split and Merge K-Means

= Require: X K, s(C), m(C), v(C)

= Ensure:C,Y
1: C = K-means (Xt, K)
2: Repeat
3 cs=5s(C), Xs = {Xn|Yn = s}
4; {ci|¢;} = K-means (Xs, K = 2)
5: if v(C ) > v(ClcsU {c;|c;}) then C=ClcsU {c;|c;}
6: until |C| is not changing
7 repeat
8 ci,cj=m(C)
9: Yi=Yi, C=Clc
10: if v(C) > v(C/cj) then
11: C=C/g
12: until |C| is not changing
13: C =K-means (Xt, C)

This split and merge K-means creates an initial partitioning through a first K-means step
with a predefined number of clusters. Afterwards consecutive split and merge steps are
invoked where the changes on the cluster result are assessed using some internal validity
measure V(C) like the Bayesian Information Criterion (BIC). Those split and merge steps
are repeated until changes no longer improve the fitness. At the end of the algorithm, an
optional K-means step can further refine the results of the dynamic updates. Note that
the input parameter K is optional and per default two, but the algorithm allows setting a
preliminary expectation on the cluster number to reduce runtime. In order to reduce the
number of splits and merges, algorithm also introduces a splitting criterion s(C) and a
merging criterion m(C) for selecting the cluster to split or merge in a step. In this
approach, s(C) selects the cluster with the lowest average data sample similarity.
Similarly, m(C) selects the two most similar clusters as merging candidates. Researcher

claims that split and merge K-means reaches the goal of providing a clustering structure
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that dynamically selects its cluster number with an acceptable runtime and a favorable
precision. In addition, this approach can be highly effective to generate an initial
clustering result with an automatically detected number of clusters as well as in
incremental applications where the given cluster hierarchy should be updated
dynamically as new documents are added or old documents are removed. As a final
remark, this split and merge approach seems to reach the goal of providing a clustering
structure that dynamically selects its cluster number with an acceptable runtime and a

favorable precision.

By the end of this subsection, the researcher observes that many of researches, that
referred within this subsection or not refereed do not mention to inability k-means
algorithms to cluster non-linearly separable datasets, which one of the main limitation of
K-means algorithm. Accordingly, the researcher attempts developing a new algorithm
to overcome a combination of K-means limitation such as: (i) noise or outlier which
deteriorates the quality of clustering results (ii) initial centroids that have a direct impact
on the formation of final clusters (iii) Inability to cluster non-separable datasets.
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Chapter 3

3. Methodology and Design

In this chapter, the researcher presents proposals related to K-means family of
algorithms. Starting with identifying and explaining in depth the proposed seeding
algorithm titled DIMK-means, which stands for “Distance-based Initialization Method
for K-means clustering algorithm” which was developed to select a set of centroids that
would result in a low cost clustering solution. Then the Chapter explores another
proposed algorithm called DSMK-means which stands for “Density-based Split- and -
Merge K-means clustering Algorithm” that have been developed to address stability
problems of K-means clustering, and to improve the performance of clustering when
dealing with datasets that contain clusters with different complex shapes and noise or

outliers.

3.1 DIMK-Means “Distance-Based Initialization Method for K-Means
Clustering Algorithm”

K-means algorithm is classified as a partition-based clustering technique, which
is popular and widely used and applied to a variety of domains. K-means clustering
results are extremely sensitive to the initial centroid; this is one of the major drawbacks
of K-means algorithm. The researcher proposes a selection method for initial cluster
centroid in K-means clustering instead of the random selection method. The research
provides a detailed performance assessment of the proposed initialization method over
many datasets with different dimensions, numbers of observations, groups and clustering

complexities.

3.1.1 The Effect of Random Selection of the Initial Clusters’ Centroids

Selection of initial centroids in K-means algorithm have significant impact on the
results. The quality of K-means clustering results depends heavily on the manner of

initialization. If this done incorrectly, things could go horribly, wrong. In this sub section,
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we will illustrate by examples that choosing different starting point values lead to
different clusters with different error values.

The first example shown in the Figure 3.1, which shows the results of running the K-
means clustering algorithm on dataset with input parameter (k=2). This simple example
shows that the position of starting point “initial cluster centroids™ is important when
trying to determine the best representation of clusters. When comparing Figures 8.1 and
8.2 visually; it can be determined which of the two clustering is “better”, clusters in the
second case “Figure 8.2” has better results as it could include all the points in each cluster
while in the first Figure one of the points from the right cluster were included in left one.
In addition, Figure 8.2 has lower values of objective function E than the first clustering

result in “Figure 8.1”.

Figure 8.1
O
o Data Points 00O O
_ coo ® = o X
@ Cluster centroid 000 o
9 Initial centroid ©)
Figure 8.2
O
¢ Data Points % 0O O %o
@ Cluster centroid g‘ég o
¢ Initial centroid O

Figure 3.1: Example 1 show Initial centroid effects on K-means result.

In the second example shown in the Figure 3.2, a dataset is supposed to consist of N
points in five tight clusters of some tiny radius arranged in a line, with some large
distance D between them. These artificial datasets distribution is shown in Figure 3.2.1.
If the input parameter k=5 to initialize K-means then five centroids are selected at random
from the data. There is some chance that we would end up with no centroid from cluster
5, two centroids from cluster 3, and one centroid each from clusters 1, 2, and 4. These
artificial datasets are shown in Figure 3.2.2. After the first iteration of K-means, all points
in clusters 1 and 2 will be assigned to the leftmost center. The two centers in cluster 3
will end up sharing that cluster. In addition, the centers in clusters 4 and 5 will move

roughly to the centers of those clusters. In this example, the results of K-means algorithm
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shown in Figure 3.2.3 are bad as it merges the two most left clusters together and splits

the middle one into two different clusters.

Figure 3.2.1
Figure 3.2.2
Figure 3.2.3
Cluster border Cluster centroid D Distance between clusters

Figure 3.2: Example 2 show initial centroid effects on K-means result.

The above two examples show clearly how important the initialization process is and its
effects on the results of K-means algorithm, which concludes that the selection of the
initialization centroids is crucial. Most of developed algorithms to solve the initialization
process sensitivity suffer from high computational complexity and therefore do not have

strong scalability.

3.1.2 Proposed Method

First of all, It is well known that selection of the first centroids when they are far
apart and each centroid belongs to different cluster has several benefits: [i] Decrease
computation amounts, [ii] Optimize algorithm performance by minimizing the objective
function of K-means algorithm which leads to better results.

This research proposes a new simple and scalable method for the initialization process
in K-means; this method starts by choosing random initial centroid then some
calculations are performed to decide whether the point is suitable to be considered as a

first initial centroid or not. Such decision is based on the process of computing distances
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between the selected centroid and other points within the dataset. The researcher uses
two types of measuring distances between points “Euclidian or Manhattan” Because of
the different nature of data. Figure 3.3 gives a general overview to the mechanism of the
proposed method to calculate the best initial centroids for K-means algorithm.

To explain the example in Figure 3.3: Suppose we have a dataset as it occurs in figure
and the value of K=3 which represents the number of clusters. DIMK-means will start
by selecting first centroid randomly (suppose the point shown in Figure 3.3 “iteration j”
at the bottom right part as to be selected point). After selecting the point, the algorithm
is to compute distances among the random selected point and the rest points in the
dataset. Then the values of (g,¢’) calculated Based on the values of the distances
calculated in the previous step, the algorithm decides that first selected point is not
suitable and not good enough to be considered as basis for calculating the acceptance
center because of the value of ¢'is greater than €. The algorithm still trying to select the
first suitable centroid and the &' is greater than € , so @ new point selected randomly as
shown in Figure 3.3 “iteration j+1” and the current one ignored and is considered noise;
because it is relatively far from the other points in the dataset. The algorithm repeat the
previous steps on the new point and the values of (g, €") calculated, because of the value
of €' is less than ¢ the algorithm decides to calculate the mean value of the nearest points
to the selected point, which are shown in the Figure 3.3 “iteration j+1” inside the black-
dotted line. The resulting mean value is considered as the first acceptance initial centroid
(C1). Then those nearest points are ignored and a new farthest point is selected as shown
in Figure 3.3 “iteration j+2” where the selected farthest point located at the left side. The
algorithm repeats the steps on the farthest point and €' is greater than € and there is one
acceptance centroids, then algorithm choose the closest point from the current point and
repeat the steps of algorithm while current point will be considered as a noise. Because
of the value of €' is less than ¢ the algorithm decide to calculate the mean value of the
nearest points to the selected point, which are shown in the Figure 3.3 “iteration j+2”
inside the black-dotted line located at the left side. The resulting mean value is considered
as the second acceptance initial centroid (C2). The same steps are executed again and the
third acceptance initial centroid (C3) is calculated as shown in the Figure 3.3 “iteration
j+3”. All initial centroids are selected, and then the standard K-means is applied to the

whole dataset.
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Iteration j+1

Iteration j+2

" Ignoring Data

‘ Acceptance centroid

X, Random object c; Selected centroid

X Selected centroid

Figure 3.3: shows the operation of selecting candidates of the initial centroids from artificial

dataset using DIMK-means.

32

www.manharaa.com



Assumption I: The number of objects in a cluster is close or equal to the number of
objects in other clusters.

This assumption is based on the fact that K-means algorithm always get better results
with datasets which are similar in density and close in the objects number in each cluster.
Therefore, this assumption is valid for a large number of datasets.

Computing the distances between the selected point and the remaining points is the
backbone of this method because the distance values between the selected centroid and
its nearest point is used to calculate the value of ¢’ and is compared with the value of €
which is equal to the mean value of the distances between each pair of N points.
Determine the number of the closest points to the selected centroid depending on the
Assumption I, where the number is equal to 80% to 90% of the number computed from
dividing the total number of dataset objects divided by the number of clusters given from
the user. If the first selected point was noise; i.e. €”> g; this point is ignored and another
point should be selected randomly as initial centroid until the first centroid is found.
Then; the next centroid should be selected as the farthest points from the first centroid.
If the second selected point was noise; it is ignored and its closest point is selected as
centroid which in turn should be tested if it is noise or not. Then, the mean value of N
number of the closest point to the current centroid is saved as the first accepted centroid
which is ignored in the following computations. This method is repeated until the
required number of centroids is identified.

3.1.3 DIMK-means Steps:

The proposed clustering algorithm “DIMK-means” consists of five main steps,
which are as follows:
Suppose that we are going to partition X={X1,X2,...,Xxn} Which is a dataset with N
number of objects, and K is an input parameter equal to number of clusters.

1. Select First Centroid Randomly:

DIMK-means starts with selecting a random point to be used in computing the first
centroid. Which in turn is used to calculate other centroids by computing the
distances among the dataset points.

2. Calculate distances from the selected point to the other points:

The base of this algorithm is to compute distances among the random selected point
and the rest points in the dataset. Researcher choose distance calculation algorithm
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“Euclidean distances” to be applied, that distance is special because it conform to

our physical concept of distance.

3. Calculate the values of (n, €, €):

Based on the values of the distances calculated in the previous step, the algorithm
decides if the selected point is suitable and good enough to be considered as basis
for calculating the acceptance center or not.

The variables (n, £, €') mainly depend on the values of the distances between the
selected point and the other points in the dataset, these variables are essential to
make a decision whether this point is suitable or not.

The used variables are defined as follows:

e n: Is the minimum expected number of points located in each cluster that
belongs to a particular dataset and closest to the selected point,
Depending on “assumption I, the value of n is usually equals a certain
percentage of the total number of points divided by K of centers.

e ¢ Isthe average value of distances between each pair of n points, these
n points are the nearest points to a selected point.

e ¢£': Is the distance between the selected point in the first step and the

nearest point.

4. After calculating (n, £, €'), the selected point is checked whether it is valid to

be used to calculate the acceptance centroid or not.

Determining if the selected point is appropriate or not is based on the values of
variables (n,e,&') as follows:

a. If &' is greater than & and the first initial centroid is not selected yet, then
another point should be selected randomly and the current one should be
ignored and is considered noise because it is relatively far from the other
points in the dataset.

b. Ife'is greater than € and there is one or more selected centroids then choose
the closest point from the current centroid. The current point will be
considered as a noise, while the new closest point will be used to calculate
a new centroid as in steps 1 through 3 by calculating the distances and

finding new values for n, ¢ and ¢'.
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c. Ife'is less than ¢ then calculate the mean value of the nearest n points to the
selected point. The resulting mean value is considered as the acceptance
initial centroid. Then those n points are ignored and a new farthest point is
selected and step 2 is repeated until all centroids are selected.

5. After all centroids are selected run K-means with selected initial centroids

parameters.
After selecting all initial centroids, the original K-means is applied to the whole

dataset.

3.1.4 Advantages and Limitations of DIMK-Means Algorithm

e Advantages:

a. The algorithm is not difficult to implement.

b. The algorithm does not require any additional parameters more than the
standard K-means algorithm.

c. The algorithm makes K-means less sensitive to noise.

d. The performance of K-means algorithm with the proposed initialization
method “DIMK-means” is more effective and converges to more accurate
clustering results than those of the random initialization method.

e. The proposed method has substantially outperformed the standard K-means
in terms of speed; It is true that the proposed initialization method needs
more time than random initialization method but the initial centroids selected
by the proposed initialization method are very close to the true clusters’

centroids, thus reducing the rest standard K-means computations.

e Limitations:
1. DIMK-means algorithm did not reduce the number of parameters needed.
2. When a number of objects in a cluster is not close to the number of objects
in the other clusters, DIMK-means gives a similar or slightly better
performance than the standard K-means. This is not a big problem considering
that K-means algorithm always gets better results with datasets, which are

similar in density and size.
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3.1.5 DIMK-means Algorithm Pseudo-Code

Suppose that we are going to partition X={x1,X2,...,Xxn} which is a dataset with N
number of objects, and K is an input parameter equal to number of clusters.

Algorithm 3.1 : DIMK-means

Purpose: Clustering dataset

Input: X={X1,Xo,...,xj} (set of entities to be clustered)
K (number of cluster)

MaxIters (Limit of iterations)

Output: C={CyCy,...,Ck} (set of cluster centroids)
L= (set of cluster labels of X)

Procedure

1. Choose an initial centroid ci = X;, where 0< i < K and X, random from X.
2. Compute the distance between selected centroid ci and each point in X, and
then sort the data points based on the resulted distances.
D= d(ci,xj)

Where D: typically is chosen as the Euclidean distance, 0 <j <N.

3. Get a subset of the sorted data with a number of points equal to N

. N/k
n = CeilEven o

Where n: number of data most close to the selected centroid ci, ¢ is a

double number 1< o <2, and CeilEven is a function that rounds a double

number up to the nearest even integer.

4. Compute the average distance between each pair of n points
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n
n
€= Z d(Xm+1) Xm+2) /E
m=0,
m=m-+2
e =d(¢,x")

Where x' represent the closest data points to ci, while m is

incremented by 2, and x* is the closest point to ci.

5. If { &' >eand i=1}; ignore ci and go to step 1 to select a new ci

6. If {&' >¢eandi>1}; ignore ci, select a new ci with value equal to the closest
point to the previous ci; and go to step 2.

7. Choose the next centroid ci+1 to be the farthest point from ci.

8. The mean value of n points closest to ci is identified as the centroid and is saved
as “acceptance centroid Cj «.

C = (zn: x{n>/n

m=0

Where Ci: represent the mean value of the closest points to ci.

9. Ignore n points, which are the closest to ci.

10. Go to step two with value of ¢; = ¢i+1.

11. Repeat steps until a total of K centroids are chosen.
12. Run K-means Algorithm with selected centroids.
13. End;

The following Figure 3.4 show flowchart that exhibits the process of DIMK-means and

explains the abovementioned pseudo code:
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Select first point
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Compute €, €’
If point is
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acceptance center C/
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current point

Run Standard K-means

without random
initialization

Figure 3.4: Flowchart of DIMK-means algorithm.
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3.2 DSMK-Means “Density-Based Split-And-Merge K-Means
Clustering Algorithm”

The K-means algorithm is a simple and fast clustering technique that exhibits the
problem of merging some clusters which are close together. In addition to that, the
algorithm generally suffers from unsatisfactory accuracy when the dataset contains
clusters with different complex shapes, sizes, noise and outliers. In this work, researcher
addresses these problems by combining split and merge strategy and density clustering
techniques. The proposed density-based split and merge K-means algorithm comprise of
two parts, the first one depends on density to decide if the cluster to be split or not, and
distance to decide if the clusters to be merged or not.

If the first part was not applicable, then the algorithms applies the second part which
tackles noisy data and depends on density to identify noisy objects or points in a dataset.
The next section explains this procedure in more details.

Using density with split and merge techniques in this algorithm makes the proposed
algorithm capable of detecting clusters with different complex shapes. Furthermore,
density technique helps in discovering noise or outlier. This gives the proposed algorithm
higher accurate results than the standard K-means algorithm when applied on datasets
containing large numbers of objects, clusters with different shapes and/or clusters

containing noise objects.

3.2.1 Performance of Standard K-Means

This subsection discusses a set of experiments on K-means algorithm with

different datasets. These experiments illustrate the ability of K-means algorithm to find
the true cluster, as clarifying the strengths and weaknesses of algorithm is the end purpose
of these experiments.
To establish practical applicability of K-means algorithm, its performance was tested on
a number of artificial and real world datasets. Those datasets contain clusters with
different complex shapes, densities, sizes, noise and outliers. The main purpose is to
show how K-means work with this type of datasets. It was experimented on two different
types of datasets which are: Artificial (Ground Separation, document Sim, and Rnoisy)
and real datasets (Web Log, Image Extraction). These datasets are described in depth in
Chapter 5.
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The next paragraphs illustrate researcher observations on the results of standard K-means

algorithm on all previous datasets.

% Interpreting Results of K-means with Ground_Separation dataset:

In many clustering analysis problems, one would like to extract structure from
cluttered background. This is the case in the Ground_Separation dataset. In such cases,
it is easy to predict that K-means will not get accurate results, due to their requirement
to partitioning all the input data. To illustrate this point, consider the Ground_Separation
dataset shown in Figure 3.5, which contains a dense central cluster of random points
surrounded by equally distributed clutter points (the “background”) and there are four
extra clusters around the ring cluster. As expected, on these data, K-means failed as it
split the central group into multi pieces.

This experiment was running many times on Ground_Separation dataset as shown in
Figure 3.5 The main feature of this dataset is that it contains different structurally
clusters, one is compact, and the other with extended structure. Here, K-means produces
in-accurate results, as shown in Figure 3.6.(A, B, C, and D). After running the algorithm
lots of times with these datasets, the results were bad every time. Researcher noticed that
some parts of the ring-shaped cluster were classified with disparities between five or six
different clusters, even though all the points forming the ring belong to one cluster. These
results shown in Figure 3.6.(A,B,C and D).The most important general observation is
that centroids of clusters obtained from K-means results, which plotted as x on Figure

3.6, is always not in a dense area.
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Figure 3.5: plot points belong to Ground_Separation dataset.
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Figure 3.6: Low accurate results obtained with standard K-means algorithm with
(Ground_Separation dataset).
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7

% Interpreting Results of K-means with Weblogs dataset:

Using K-means to get real work done means running the algorithm lots of times
on different types of datasets. This time we test the algorithm performance on real
datasets “Weblogs”. In such cases, it is easy to predict that K-means will not work well,
due to their different cluster shapes in weblog dataset. Weblogs datasets that shown in
Figure 3.7 is comprised of three clusters, which include outliers, the two clusters on both
ends, have a sphere shape while the third cluster, in the middle, contains a large number
of objects, which extends horizontally as “Gaussian structure”. Figure 3.8 shows the
results of standard K-means applied on weblogs dataset, where it is easy to observe with
naked eye the low accuracy of results. In Figure 3.8 (A, and B) the curve with a dotted
line in black represents bad results as one true cluster was merged with part of the cluster
in the middle. Furthermore, in Figure 3.8 (C); the results were very bad because parts of
the middle cluster “cluster with Gaussian structure” was merged with two other existing

clusters which marked by curves with a dotted line in black and red.
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Figure 3.7: plot points belong to Ground_Separation dataset.
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Weblog dataset
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Figure 3.8: Low accurate results obtained with standard K-means algorithm with (Weblog
dataset).
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7

+« Interpreting Results of K-means with Image_Extraction dataset:

The researcher applied K-means on Image-Extraction dataset, and as the previous
experiments, it was easily noticed that the results were inaccurate. The researcher
observed during the tests that the result always took approximately the same shape.
Figure 3.9.A represents the plot of the datasets points on two-dimensional space. While
Figure 3.9.B represents K-means result with the same dataset. Like the previous
experiments, the observation was that bad clusters’ centroids obtained from K-means
results were not in dense area.

Image Extraction dataset
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Figure 3.9: Low accurate results obtained with standard K-means algorithm with (Image
Extraction dataset).
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% Interpreting results of K-means with Rnoisy dataset:

K-means was applied on Rnoisy dataset and the results were sometimes of high
accuracy and other times with bad accuracy, which convinced the researcher that K-
means has unstable results when applied on datasets similar to Rnoisy datases, which
contain many noisy points.

K-means algorithm high accurate results obtained when applied on Rnoisy
dataset are shown in Figure 3.10. It is clear in Figure 3.10 that the data contain many
noisy points which K-means algorithm is very sensitive to. The researcher observed
during the tests that the shape of clusters in results takes different forms in each time.
Figure 3.11(A) summarizes the results and it is easy to observer with naked eye how low
accurate the obtained results are. Curves in Figure 3.11(A) show the bad results area were
red-dotted line shows that one true cluster has been split into two clusters “blue and red”,
while the black-dotted line shows that two true clusters merged into one cluster “yellow”.
Many other bad results occur repeatedly In Figure 3.11(B.C.D). Finally, researcher
observed that noisy points are always not in dense area.

This observation was the basis the researcher depended on to develop new ways

to overcome the weakness of K-means algorithm when working with noisy datasets.

Rnoisy dataset
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Figure 3.10: High accurate result obtained with standard K-means algorithm with (Rnoisy).
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Figure 3.11: Low accurate results obtained with standard K-means algorithm with (Rnoisy
dataset).
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% Interpreting Results of K-means with Document_Sim dataset:

By running K-means, multiple times with Document_Sim dataset that contains
number of noise points larger than Rnoisy dataset, in many times the results were
unacceptable with low accurate results. In rare times, standard K-means algorithm
obtained high accurate results when applied with Document_Sim dataset as shown in
Figure 3.12.

To illustrate the unacceptable results “bad result” let us see Figure 3.13
(A.B.C.D). The Figure shows the bad results areas which are inside the red-dotted line.
That line represents either areas where one true cluster has been split into multiple
clusters or represents a cluster which is basically formed of noise points, while the black-
dotted line shows that two or more true clusters are merged into one cluster. The noise
points always are not in dense areas. This encourage the researcher to develop new ways

to overcome these weaknesses of K-means algorithm.
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Figure 3.12: High accurate result obtained with K-means algorithm with (Document_Sim).
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Figure 3.13: Low accurate results obtained with standard K-means algorithm
(Document_Sim dataset).
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3.2.2 Proposed Solution

A discussion of the previous subsection experiments results shows the
performance of K-means algorithm with different datasets with different behavior. Now
researcher reviews the proposed ideas designed to overcome and solve major limitation
and weaknesses of K-means algorithm. Generally, the algorithm suffers from
unsatisfactory accuracy when the dataset contains clusters with different complex shapes,
sizes, noise and/or outliers.

Based on the observation from the previous experiments where K-means merged
true clusters, the resulting cluster centroid was -most of the time- not located in a density
unit as it is locate between multiple true clusters. This observation was a result of the fact
that K-means algorithm gets low accurate results when working with datasets contains
clusters with different complex shapes. So, the researcher proposes to apply Split and
Merge technique to overcome such limitation.

Another observation is the low accuracy of K-means algorithm when working
with noisy datasets where noise or outliers always spread between datasets objects not in
density unit. A proposed solution to overcome such limitation is by temporarily ignoring
noisy objects which are not located in dense units, then rerunning standard K-means
which is expected to give better results without the neglected noise. After that, re-include
the neglected noisy objects to the nearest clusters.

The proposed algorithm includes solutions for cluster with complex shapes and
datasets with noisy objects. The solution for the first problem is split and merge while
the solution for the other problem is called anti-noise. This algorithm is applied on the
results of standard K-means starting with checking if all the clusters’ centroids are
located in density units, anti-noise solution is applied, but if one or more centroids are

located in non-density unit, then split and merge solution is applied.

The following cases explain in details how each solution is implemented:
% Split and Merge Method:
When applying standard K-means on datasets containing clusters with different
complex shapes, some of the resulting clusters are either merged into larger clusters or
split to smaller ones. First, in order to determine which method to apply we need to

identify if the clusters have centroids in non-density units. So, Sum Square Error “SSE”
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is computed for each cluster in standard K-means results where the cluster with smallest
SSE value is selected, then we compute Epsilon “&” which is the radius that delimitates
the neighborhood area of a point by calculating the distance between the centroid of the
selected cluster and the nearest point multiplied by two, which is the shortest suitable
Epsilon “g” distance that almost contain appropriate number of points. Then calculating
“MinPts” which represent the minimum number of points that must exist in the &
distance. MinPts is equal to 0.75 of that number of points within € radius (approximated
to an integer number). The researcher takes 0.75 of the points to be considered as MinPts
in order to exceed the varying density of clusters centroids.

In addition of previous reasons and based on experiments, the researcher found that
multiplying the distance between the centroid and its nearest point by 2 is the most
convenient and yields the best results most of the time, as well as determining MinPts by
multiplying the number of points falling within € radius by 0.75.

Second, each cluster centroids in the standard K-means results is tested to make sure it
has a number of point equal to or greater than MinPts. If there is at least one centroid that
has a number of neighbor points within &” radius that is less than MinPts; then it is not
in a density area, and we start the Split and Merge method, otherwise we use Anti-noise

method as in case 2.

» Density-based cluster split:

The splitting process is applied on clusters with centroids located in non-density
units, each of those clusters is split into two new clusters. The resulting cluster centroids
are tested to assure them all located in density units. The process of splitting is repeated
until all the resulting cluster centroids are located in density units using the same ¢ and
MinPnts calculated at the first run.

Splitting clusters into only two new sub-clusters instead of three or more is based on
the fact that the possibility of having new cluster centroids in density unit in the least
number of possible sub-clusters is higher than having such results in more than two sub-
clusters.

A counter in increased by one each time a cluster is split, in order to keep record of

how many split process were done to be used in the merge process.
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» Single linkage based cluster merge:
When the split process is finished, all clusters’ centroids are in density units and
the number of clusters is more that the number of clusters obtained from the standard K-
means applied in the first step.
The merge process starts by creating “distance matrix” between each pair of clusters’
centroids including all clusters within the dataset. The resulting distance matrix is y*y
matrix where y is the number of all the clusters in the dataset including the clusters
resulted after the split process. This matrix is used to identify the two most close cluster
centroids with the dataset in order to check if they both belong to one true cluster. Single
linkage “nearest neighbor or shortest distance” concept is applied for this purpose, where
it calculates and finds the shortest distance between a pair of objects each of them is
located in one of the selected closest clusters. Then, the merging will take place if at least
one of the following conditions is true:
1: The distance between the two nearest points that belong to the clusters with
closest centroids is less than or equals to «.
2: The point in the middle between the selected pair of objects is checked if it is
in a density unit and has a number of points equal or larger than MinPts within

¢ radius that belong to the closest clusters.

If one of the above conditions is fulfilled, then the two closest clusters are merged, then
the distance matrix is calculated and the process is repeated as many times as the split
process. Otherwise, the second shortest distance from the distance matrix is selected and
the process is repeated.

At the end of this process, the number of resulting clusters is the same as the number of

clusters resulted from the standard K-means where K is user parameter.

» Expressing Split and Merge Method by Example :

One of the famous and complicated clustering analysis problems is to extract
structure from cluttered background. This is the case, for example, with figure/ground
separation and perceptual grouping like Figure 3.6 and Figure 3.14. The last figure,
specifically Figure 3.14(A), shows results of standard K-means algorithm that gives very

bad results as it split cluster in the center of Figure into two parts each part merged into
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different clusters, one of these clusters plotted in red color with square shape, and the
other plotted in blue color with circle shape.

When applying split and merge method on the same problem Figure 3.15, each
of the two clusters obtained from standard K-means were split into three clusters on two
runs, resulting in six new clusters instead of the original two. The split counter recorded
four splits. In merge process, the two clusters in the middle were merged into one cluster,
while the clusters in the ring were merged into one cluster through three merge processes.
The process of DSMK-means clustering algorithm is explained in Figure 3.15. The final
shape of the results is in Figure 3.14(B).

The results obtained from the split and merge method cannot be obtained from
the standard K-means. As the applied method used the density and single linkage
concepts combined with the standard K-means algorithm, which resulted in better results.
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Figure 3.14: Low accurate result obtained with K-means V.S high accurate result obtained with

DSMK-means algorithm.
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Clarify all the steps of DSMK-means algorithm.
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++ Case two - Anti-Noise proposed Method:

In standard K-means clustering, when applied on datasets containing noise
objects , the results are -most of the time- of low accuracy. As the standard K-means
includes all noise objects in the calculations, the end result will lack accuracy, in addition,
standard K-means will either merge some true clusters into larger clusters or -in some
cases- identify groups of noise points as clusters.

The researcher has developed a way to decrease the effect of noise objects on the end
results through observations during lots of experiments applied on different datasets
some of which were explained in the previous section. The researcher concluded that -
most of the time- the noise points were in non-density unit as well as most of the points
far from the centroids even when the K-means results are highly accurate. Based on that
conclusion, the researcher build the Anti-noise method which is mainly about neglecting
points far from the centroids in order to acquire high accuracy results.

Anti-noise method starts with calculating distances between each point in a cluster and
its centroid where the distance are listed in an ascending order. Starting with the farthest
points -which has the largest distance-, Anti-noise checks if that point is located in
density unit or not. If it was located in non-density unit, then it is temporarily neglected
and the next farthest point is check. This process goes on until a point that is located in a
density unit is found or all the points are checked. In the case of finding no points in
density unit, then the whole cluster is neglected, and the next cluster is checked in the
same manner.

After checking all clusters within the dataset, standard K-means is applied again on the
dataset without the neglected points. The results of such run will have higher accuracy
than those when including the neglected points and the resulting centroids will be very
close to the true centroids. Afterwards, each of the neglected points is assigned to the

cluster with nearest centroid.

» Expressing Anti-Noise Method by Example:

From the experiments this method is important and completes the “split and
merge” method as it applied when all cluster centroids are located in density units.
Anti-noise method steps are shown in Figure 3.16, where Figure 3.16(A) is showing the
results of standard K-means algorithm which easy to notice how bad the results are. In
this case, the split and merge method can not be applied as all the centroids are in density
units. Figure 3.16(B) shows the result of K-means algorithm on the Document_Sim
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dataset without neglecting noisy points, and by comparing Figure 3.16(A) and Figure
3.16| (B) you can notice which points are neglected. When analyzing standard K-means
results without including the neglected noise points, it is noticed that Anti-noise method
was able to locate centroids almost exactly as the true centroids. Figure 3.16(C) shows
the final results of DSMK-means algorithm, the algorithm relocates the neglected points
and assigns each one to the closest clusters’ centroids which lead to high accuracy of
algorithm and makes it able to cluster datasets with different complex shapes or those

who have noise points.

B. Results of Standard K-means
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Figure 3.16: Proposed anti-noise method steps on Document_Sim dataset.
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3.2.3 DSMK-means Algorithm Pseudo-Code
Suppose that we are going to partition X={x1,X2,...,Xxn} Which is a dataset with n number
of objects, and k is an input parameter equal to number of clusters required.

Algorithm 3.2 : DSMK-means

Purpose: Clustering dataset

Input: X={X1,X2,...,xj} (set of entities to be clustered)
K (number of cluster)
Maxlters (Limit of iterations)

Output: C={C4,Cy,...,Ck} (set of cluster centroids)
L= (set of cluster labels of X)

Procedure

1. RUN standard K-means algorithm
2. COMPUTE sum square error “SSE” for each cluster.
3. COMPUTE ¢ and MinPts value for cluster with minimum “SSE” value.
— Eps or £, the radius that delimitate the neighbourhood area of a point
(Eps-neighbourhood)
— MinPts, the minimum number of points that must exist in the Eps-
neighbourhood.
4. FOREACH cluster
5. Create list of clusters with centroids Ci in non-density units.
6. |F number of point's within Eps-neighborhood contains < MinPts (centroid in density
unit).
7. THEN add cluster to list Ci
8. ENDFOR EACH
9. CASE METHOD OF
10. CASE-ONE “If one or more centroids Ci is not in density unit”:
(Spit and Merge started)

11. Declare count=0 represent number of splitting operation

SPLIT PROCESS

12. For all Clusters Ci List
13. IF centroid Ci is in non-density unit

14.  Split Ci cluster into two clusters with standard K-means (K=2).
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15. DELETE Ci cluster and ADD split clusters to List

16. Increase count by 1

17. ENDIF

18. ENDFOR

19. WHILE count =0

20.  Calculate centroids distance matrix

21. FOR each item in distance matrix

22. Find the tow nearest clusters centroids from all dataset clusters using
distance matrix

23. Find the two closest points from the two closest clusters using single
linkage.

24. IF (distance between two nearest points is less than or equals to €)
THEN Merge those two clusters.

25. ELSE, Find middle point

26. IF (middle point between two nearest points from two closest clusters
“Single Linkage” is in density unit) THEN

217. Merge those two clusters.

28. Decrease count by 1

29. ELSE,

30. Go Tostep 22
31. ENDIF

32. ENDFOR

33. IF no clusters are merged THEN

34. Merge tow nearest clusters’ centroids

35. Decrease count by 1

36. ENDIF

37. ENDWHILE

38. CASE-TWO “ If all centroids are in density units”:

39. FOR each cluster Ci

40. FOR each point Pn

41.  Compute distance between the centroid and Pn where n is the number

of points in a cluster Ci
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42.
43.
44,
45.
46.
47.
48.
49.
50.

51.

52

ENDFOR
Sort the distances in ascending order in each Ci
ENDFOR
FOR all centroids
WHILE the farthest point from centroid Ci is not in density unit
Neglect the point and considered as noise
ENDFOR
RUN standard K-means algorithm without the neglected points “noise”
Depending on the K-means cluster results, the neglected points are
assigned to the closest cluster.
ENDCASE
. End ALGORITHM

3.2.4 Advantages and Limitations of DSMK -Means Algorithm

e Advantages:
1.

The algorithm can handle large numbers of datasets as it solves two different

problems in standard K-means (sensitivity to noise, complex shapes).

The algorithm has combined the characteristics of partition clustering and

density clustering concepts.

The algorithm is not difficult to implement.

The algorithm does not require any additional parameters more than the

standard K-means algorithm.
The algorithm is less sensitive to noise and outlier.

Algorithm got better accuracy when datasets containing clusters with

complex shapes and sizes.

Algorithm able to cluster non-linearly separable data.

o Limitations:

1. Algorithm did not reduce the number of parameters needed.

2. Algorithm increases the computational complexity.
3.

In some rare cases, algorithm had bad results as the standard K-means.

The next Figures (3.17 — 3.18) exhibits the flow chart of the DSMK-means algorithm:
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Run standard K-means

Select cluster with smallest Sum Square Error “SSE”
value, then calculate value of [¢, MinPts]

Depending on value of [e , MinPts]
Check density for all centroids in k-means results

NO Al centroids in Yes
density unit “Area”

Go to Fig 21 “Anti-
Declare Count=0; For each noise method”

elements of cluster List C/

Check density of cluster C/centroid

The distance between every pair of

If centroids in non-density unit cluster centroids is computed
then Split cluster Ci using
standard K-means ( input

parameter K=2)
/

Find clusters with the shortest
centroid distance and compute single
linkage for these clusters
DELETE Ci cluster and ADD
Splitting clusters to list

No| & Count£0

Count=Count+1 Cond:.ion 1

& Count=0 .-

If End list

Merge two cluster and centroid for the

Condition 1: If point in the middle of single new cluster is computed as the mean of
linkage in dense unit, where MinPts =MinPts/2 the joined clusters, Count=Count-1

for each cluster OR distance between two

nearest points less than or equals to €

The two clusters with the shortest
centroid distance are joined,
Count=Count-1

End

Figure 3.17: Flowchart of DSMK-means “Split and Merge” algorithm.
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For each cluster calculate Euclidean Distance D(Ci,Pn),
where i<=K and n<= number of Cluster point

Sort point belong to Ci upon distance from centroid
Ascending {Pn farthest points from Ci centroidy

If point Pn in
density unit

Ci=Ci+1
Ignore Pn then check next
farthest points (Pn=Pn-1)

Yes | Ci=Ci+1

If i<=K,
Where K:number
of cluster

Run standard K-means without
ignore points

Assign each ignore point to the
closest cluster centroid

Figure 3.18: Flowchart of DSMK-means “Anti-noise” algorithm.
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Chapter 4

4. Experimental Results

Description of the datasets used in experiments and the measurement techniques in
addition to measuring the accuracy of the proposed algorithms’ results to ensure their

ability in delivering better results than other algorithms

5.1 Datasets Specifications
This section describes and identifies the specifications of datasets used in the all
experiments on the proposed algorithms. The datasets varied between real world and

artificial datasets.

5.1.1 Artificial Datasets

The Atrtificial datasets used in the experiments are:

% The Ruspini dataset:
Ruspini dataset [39], is a collection of 75 points, arranged in 4 groups, in the Euclidean
plane. It is widely used to illustrate the effectiveness of clustering methods especially the

effect of selecting the initial centroids.

% The Rfivec dataset:
Artificial dataset generated by the researcher with two dimensions, this dataset is
designed in a way that is sensitive to centroid initialization. This dataset contains 135
points distributed into five true clusters. Values of the generated artificial dataset are used

to assess the level of the algorithm accuracy and ability to identify true clusters.

% Rnoisy dataset:
Artificially polluted datasets with noise generated by the researcher with two dimensions,
this dataset designed in a way to contain a lot of noise and outliers. This dataset consists

of 188 points distributed in six true clusters. Values of the generated artificial dataset are
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used to assess the level of K-means algorithm accuracy and ability to identify true

clusters.

% Ground_Separation dataset:
Dataset contains six different complex shapes and sizes generated by the researcher with
two dimensions. The dataset consists of 479 points distributed into six true clusters. This
dataset was designed to be “hard” because of different clusters’ shapes. It is designed to

measure K-means ability to identify clusters with complex shapes.

®,

% Separation_2Circle dataset :

Dataset generated by the researcher with two different complex shapes and sizes with
two dimensions. The dataset consists of 337 points in two true clusters. This dataset is
designed to be “hard” because of different clusters’ shapes. It is designed to measure K-

means ability to identify clusters with complex shapes.

% Document_Sim dataset:
Document_Sim dataset [40] generated so that many noises are scattered. The dataset
consists of 200 points in five true clusters. The dataset is designed to be "hard". i.e. there
is a large number of outliers and noise are scattered between five true clusters. It is

designed to measure K-means ability to identify true clusters in noisy datasets.

% Aggregation dataset:
Aggregation dataset [41] consists of the seven perceptually distinct clusters with different
shapes. The dataset consists of 788 points distributed in seven true clusters. The dataset
designed to be "hard" in order to measure K-means ability to identify clusters with

complex shapes.

5.1.2 Real Datasets

All datasets used in the following experiments and more can be found in UCI Machine
Learning Repository [42] which is a collection of databases, domain theories, and data
generators used by the machine learning community for the empirical analysis of

machine learning algorithms.
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« Iris Dataset:

This is perhaps the best-known database to be found in the pattern recognition and

clustering literature. The Iris flower dataset or Fisher's Iris dataset is a multivariate

dataset introduced by Sir Ronald Fisher (1936) as an example of discriminant analysis.

It is sometimes called Anderson’s Iris dataset because Edgar Anderson collected the data

to quantify the morphologic variation of Iris flowers of three related species, which are

shown in Figure 4.1 [43]. The dataset contains three classes of 50 instances each, where

each class refers to a type of Iris plant. One class is linearly separable from the other two;

the latter are not linearly separable from each other. Table 5.1 illustrates the

specifications of the dataset.

Table 5. 1 Iris dataset specifications

Dataset Characteristics:

Multivariate Number of Instances: 150

Attribute Characteristics:

Real

Number of Attributes: 4

Associated Tasks:

Classification,

Clustering

Missing Values? NO

Area

Attribute Information:

Life

1. | Sepal length in cm
2. | Sepal width in cm
3. | Petal length in cm
4. | Petal width in cm
— Iris Setosa
5. | GROUPS | — Iris Versicolour

— Iris Virginica

Iris setosa &I

Iris versicolor &3 Iris virginica

Figure 4.1: three related species of Iris flowers (Iris setosa, Iris virginica and Iris versicolor).
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« Libras Movement Dataset:

The dataset contains 15 classes of 24 instances each, where each class references to a

hand movement type in LIBRAS as exhibited in Figure 4.2. In the video pre-processing,

time normalization is carried out selecting 45 frames from each video, in according to a

uniform distribution. In each frame, the centroid pixels of the segmented objects (the

hand) are found, which compose the discrete version of the curve F with 45 points. All

curves are normalized in the unitary space. In order to prepare these movements to be

analyzed by algorithms, a mapping operation is carried out, that is, each curve F is

mapped in a representation with 90 features, with representing the coordinates of

movement. Some sub-datasets are offered in order to support comparisons of results.

Table 5.2 illustrates the dataset

specifications.

Table 5. 2 Libras Movement dataset specification

Attribute Information:

o Multivariate,
Dataset Characteristics: ) Number of Instances: 360
Sequential
Attribute Characteristics: | Real Number of Attributes: 91
) Classification, o
Associated Tasks: Missing Values? NO

Clustering

90 numeric (double) and 1 for the class

1-91 |
(integer)

Bwing
{curved, honzontal amd '|'El'ti|:-a.|:l

=

Figure 4.2: Swing (Curved, horizontal, and vertical).
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= Weblogs dataset:

Weblogs dataset [40] is real with two dimensions; it is suitable to describe the

performance of K-means when dealing with datasets containing clusters with different

complex shapes and sizes. The datasets contain two metadata of weblog entries: number

of visits and purchase. Figure 4.3 shows the dataset point distribution. The datasets had

been gathered by crawling from the WWW. Table 5.3 illustrates the dataset

specifications.

Table 5.3 Weblogs dataset specification

Attribute Information:

Dataset Characteristics: Multivariate Number of Instances: 192
Attribute Characteristics: | Integer Number of Attributes: 3

) Classification, o
Associated Tasks: Missing Values? NO

Clustering

1. | Number of visits

2. | Number of purchase

n iy
um
200 'T.T
175
L L
150 1] [ |
.' I.l ..I..;.: L : .!
= u
= 15 A .l.ll‘.l..-.. R
100 eta ;.f.': N aa =
L] l"'l"'.ll‘ I g "
75 et amy U
agmp" - g H_N "
50 " e
[ ]
25 u
[
0

25 50 75

100 125 150 175 200 225 250 275 300 325 350 3YS 400

Figure 4.3: illustration of Weblogs dataset.

» Image_Extraction dataset:

This dataset is simplified extraction of local image features. It takes image data as input

and returns a dataset with feature vectors computed from image blocks on a regular grid

as exhibited in Figure 4.4. The dataset consists of samples from each of two species of

image. Table 5.4 illustrates the dataset specifications.
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Table 5.4 Image_Extraction dataset specification

Dataset Characteristics: Multivariate Number of Instances: 200
Attribute Characteristics: | Integer Number of Attributes: 2
Associated Tasks: Clustering Missing Values? NO

1. | Image ID
Attribute Information:
2. | Color
W niEe ET
17 . .lEl... ;... [ ] .‘ i;. 4 : n :
FI | | = | W | " Em

25 50 75

100 125

X

150 175 200 225 230

275 300 325 350 375 400

Figure 4.4: lllustration of Image_Extraction dataset

s Mammographic Mass Dataset:

The most effective method for breast cancer screening available today is Mammography

(illustrated in Figure 4.5). However, the low positive predictive value of breast biopsy

resulting from mammogram interpretation leads to approximately 70% unnecessary

biopsies with benign outcomes. To reduce the high number of unnecessary breast

biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the

last years. These systems help physicians in their decision to perform a breast biopsy on

a suspicious lesion seen in a mammogram or to perform a short term follow-up

examination instead. This dataset can be used to predict the severity (benign or

malignant) of a mammographic mass lesion from BI-RADS attributes and the patient's

age. It contains a BI-RADS assessment, the patient's age and three BI-RADS attributes

together with the ground truth (the severity field) for 516 benign and 445 malignant

masses that have been identified on full field digital mammograms collected at the

Institute of Radiology of the University Erlangen-Nuremberg between 2003 and 2006.

Each instance has an associated BI-RADS assessment ranging from 1 (definitely benign)
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to 5 (highly suggestive of malignancy) assigned in a double-review process by
physicians. Assuming that all cases with BI-RADS assessments greater or equal a given
value (varying from 1 to 5), are malignant and the other cases benign, sensitivities and
associated specificities can be calculated. These can be an indication of how well a CAD
system performs compared to the radiologists. Table 5.5 illustrates the dataset

specifications.

Table 5.5 Mammographic Mass dataset specification

Dataset Characteristics: Multivariate Number of Instances: 961
Attribute Characteristics: | Integer Number of Attributes: 6
Associated Tasks: Cla55|f|-cat|0n, Missing Values? YES
Clustering
Area Life
m

L predictive!)

2. | Age: patient's age in years (integer)

3 Shape: mass shape: round=1 oval=2 lobular=3
Attribute Information: irregular=4 (nominal)
“Attributes in total (1 goal Margin: mass margin: circumscribed=1
field, 1 non-predictive, 4 4. | microlobulated=2 obscured=3 ill-defined=4
predictive attributes) * spiculated=5 (nominal)

Density: mass density high=1 iso=2 low=3 fat-
> containing=4 (ordinal)
Severity: benign=0 or malignant=1

° (binominal, goal field!)

1. | BI-RADS assessment: 2

2. | Age: 5

3. | Shape: 31
Missing Attribute Values:

4. | Margin: 48

5. | Density: 76

6. | Severity: 0
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Figure 4.5: illustration of Mammographic Mass.

Table 5.6 presents a summary of artificial datasets used in this thesis while Table 5.7

presents a summary of real datasets. The details of each dataset are described.

Table 5.6 summary of all artificial datasets information

Datasets Name clusters Point type dimension
number
Ruspini 4 75 Real 2
Rfivec 5 135 Real 2
Rnoisy 6 188 Integer 2
Ground_Seperation 6 479 Integer 2
Separation_2Circle 2 337 Integer 2
Document_Sim 5 200 Integer 2
Aggregation 7 788 Real 2
Table 5.7 summary of all Real datasets information
Datasets Name clusters Point type dimension
number
IRIS 3 150 Real 3
Libras Movement 15 360 Real 90
Web Log 3 192 Real 3
Image_Extraction 2 200 Real 2
Mammographics_Mass 2 961 Real 6
68
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5.2 Cluster Validity Measures and Experiments Environment
Evaluation of clustering results sometimes is referred to as cluster validation. There have
been several suggestions for a measure of quality of clustering algorithms. Such a
measure can be used to compare how well different clustering algorithms perform on a
set of data. These measures are usually tied to the type of criterion being considered in
assessing the quality of a clustering algorithm [44].

5.2.1 Measuring clustering validity
% External validity:

In external validity, clustering results are evaluated based on already clustered
data such as known class labels and external benchmarks. Such benchmarks consist of a
set of pre-classified items, and these sets are often created by human (experts). Thus, the
benchmark sets can be thought of as a gold standard for evaluation. These types of
evaluation methods measure how close the clustering is to the predetermined benchmark
classes. In summary, external evaluation measures similarity of clustering against known

class labels.

% Internal validity:

When a clustering result is evaluated based on the data that was clustered itself,
this is called internal validity. These methods usually assign the best score to the
algorithm that produces clusters with high similarity within a cluster and low similarity
between clusters. One drawback of using internal criteria in cluster evaluation is that high
scores on an internal measure do not necessarily result in effective information retrieval
applications. In summary, internal validity measure the goodness of a clustering without
any external information just like Sum of Squared Error (SSE), Akaike Information
Content score (AIC), The Bayesian Information Criterion (BIC), and Sum Of Average
Pairwise Similarities (SAPS):.

Researcher evaluates the effectiveness of proposed clustering algorithms by the

following internal evaluation measurement algorithms:

» Sum of Square Errors (SSE): [45] SSE is the simplest and most widely used
criterion measure for clustering. For a given cluster; SSE is computed as follows:

for each instance in the cluster; summing the square differences between each
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attribute value and the corresponding one in the cluster centroid. These are
summed up for each instance in the cluster and for all clusters. The formula for

SSE for one cluster is:
n
SSE = z(xi — Xc) (4.1)
i=1

Where n is the number of observations xi is the value of the ith observation and xc
is the mean of all the observations.

Akaike Information Content (AIC) score: [46] [47] is a measure of the relative
quality of a statistical model, for a given set of data. As such, AIC provides a
means for model selection. AIC is founded on information entropy: it offers a
relative estimate of the information lost when a given model is used to represent
the process that actually generates the data. AIC deals with the trade-off between
the complexity of the model and the goodness of fit of the model. AIC measures
the log-likelihood of the model penalized by the number of parameters in
the model. A clustering result with small K and small variance of each cluster
will have a relatively low AIC score, which means the clustering result is good. In
the general case, the formula for AIC is:
AIC = 2k — 21In(L) (4.2)

Where k is the number of parameters in the statistical model, and L is the
maximized value of the likelihood function for the estimated model.

The Bayesian Information Criterion (BIC): [48] BIC proposed by Schwarz
(1978) is a popular method for model selection. BIC evaluates candidate models
with different number of basic functions, and the optimal number is chosen from
the best model in terms of BIC score. The formula for the BIC is:

BIC = 2 * In(k) + k * In(n) (4.3)
Where n is equal to sample size, k is the number of parameters in the statistical

model, and L is the maximized value of the likelihood function for the estimated
model.
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» Sum of Average Pairwise Similarities (SAPS): [49] The average pairwise
difference within a population can be calculated as the sum of the pairwise

differences divided by the number of pairs.

5.2.2 Experiments Environments specification

The experiments are performed on a laptop with {Intel core i5 i15-3210m / 2.5 ghz
(3.1 ghz )( dual-core )} processor and 6 gigabyte memory running Microsoft windows
8 professional 64-bit edition operating systems. Java programing language (Java™
Platform, Standard Edition Development Kit (JDK™)) is used to code the algorithms.

5.3 Performance Evaluation of DMIK-Means Algorithm

To test performance of “DIMK-means” the researcher used internal validity with selected

datasets, then, the tests results were compared with standard k-mean algorithm.

5.3.1 Datasets selection

The performance evaluation of DIMK-means is applied on five different artificial and
real-world datasets (Ruspini, Rfivec, IRIS, and Libras Movement) using popular evaluation
methods including: Sum of Square Errors (SSE), Akaike Information Content (AIC) and
The Bayesian Information Criterion (BIC), which were described in the previous sub
section. The results of such evaluation are compared with standard K-means algorithm
with random initialization method in order to identify the differences.

Table 5.8 shows the comparison of standard K-means performance results using the
random initialization and DIMK-means algorithm, which was applied on the artificial
datasets described in 5.1.1 subsection.

From the table 5.8 its observed that DIMK-means algorithm scored smaller values for
each type of performance measures (SSE, AIC, or BIC) than the results of standard K-
means on both artificial datasets Ruspini, and Rfivec. Which means that DIMK-means
get high accurate results compared with standard k-means algorithm. The researcher
observes the difference between the values of the worst and the best case reached by the
standard K-means algorithm, which initialized with the random method, is very high,
while in DIMK-means, the gap between the worst and best case is kept to minimum. This
proves that DIMK-means is more stable than standard K-means and has better results
working with artificial datasets.
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Table 5.8 The algorithms mean results of artificial datasets over 30 runs (K is an input

parameter obtained from user, which represent the number of clusters).

Dataset algorithm ‘ K SSE AIC BIC
K-means 69878.823 | 2989.2333 | 2989.108

Ruspini 4 153 511 201
P DMIK-means 25712.900 | 2948.0215 | 2947.895

25 6 195
K-means 630730.32 | 6583.4986 | 6583.628

Rfivec 5 154 813 358
DMIK-means 473906.42 | 6567.4043 | 6567.535

563 256 321

Table 5.9 also shows the comparison of initial cluster centroids computed using DIMK-
means and standard K-means algorithms, which were applied on the real datasets
described before.

From the table 5.9 its observed that DIMK-means algorithm scored smaller values for
each type of performance measures (SSE, AIC, or BIC) than the results of standard K-
means on both real world IRIS, and Libras Movement datasets. This mean that DIMK-
means get high accurate results compared with standard k-means algorithm when
working on both type of datasets real world and artificial datasets. However, the results
of DIMK-means are pretty good since the difference between the values of the worst and
the best case for Iris, and Libras Movement datasets, is kept to minimum, while the value
reached by the standard K-means algorithm, is very high. This proves that DIMK-means
IS more stable than standard K-means and has better results working with real world
datasets.

Table 5. 9 The algorithms mean results of real datasets over 30 runs (K is an input parameter

obtained from user, which represent the number of clusters)

Dataset algorithm ‘ K SSE AIC BIC
Komeans 223.37357 | 9926.5726 | 9926.748
47 73 764

IRIS 3
DMIK-means 17115360 | 9903.9967 | 9904.172
34 37 828
K means 678.06303 | 2109578.5 | 2109577,
Libras 15 13 18 961
Movement | . oo 649.18213 | 2087765.6 | 2087765,
75 09 052
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Experiments show that our proposed method is more efficient and stable than standard
K-means algorithms. That DIMK-means algorithm scored smaller values for each type
of performance measures (SSE, AIC, or BIC) than the results of standard K-means. In
addition, usually DIMK-means leads to SSE values close to or less than the minimum
SSE values obtained from standard K-means. This proves that the proposed method is
more stable than the random method and has better results confirming the need for a

stable initialization method.

To prove the efficiency of DIMK-means, the graph of the artificial datasets visually
illustrates a comparison between the results of the standard K-means and DIMK-means
algorithms as Figures 4.6 and 4.7 show the results of running the two algorithms with
Ruspini dataset, which consists of four clusters.

| DataSet

Ruspini Dataset ... Random Method

20 30 40 50 60 70 80
X
® Cluster:[0] ® Cluster:[1] # Cluster:[2]  Cluster:[3]

Figure 4.6: Results of running the standard K-means with k=4 and using 4 different starting
points, each randomly chosen from the dataset
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Figure 4.7: Results of running DIMK-means with k=4 and using 4 different starting points,
each chosen with the proposed initialization method.

In Figure 4.6 and 4.7, each identified cluster was demonstrated using a different plotting
character and color. Note the widely divergent results where it is observed that the
random method for initialization in standard K-means gets inefficient results as it merges
2 clusters together (which are plotted as red square in Figure 4.6) and split one of the true
clusters to two different clusters (plotted with blue circles and green dots in Figure 4.6).
While the proposed DIMK-means algorithm is more efficient and accurate in identifying

each cluster very close to the true ones.

Figures 4.8 and 4.9 show the results of running the standard K-means and DIMK-means
algorithms respectively with Rfivec dataset which consists of five clusters.

like the previous figures, it is observed that the random method for initialization in
standard K-means gets inefficient results as it merges 2 clusters together (which are
plotted as blue circle in Figure 4.8), splits one of the true clusters to tow different clusters
(plotted with red square and pink oblong in Figure 4.8) and merges subset of cluster with
another one (plotted with yellow cube in Figure 4.8). While DIMK-means is more
efficient and accurate in identifying each cluster very close to the true ones as shown in

Figure 4.9.
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25 S50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
X

® Cluster:[0] @ Cluster:[1] # Cluster:[2]  Cluster:[3] = Cluster:[4]

Figure 4.8: Results of running the standard K-means with k=5 and using 5 different starting

points, each randomly chosen from the dataset.

Rfivec Dataset ... Random Method

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
X

W Cluster:[0] ® Cluster:[1] # Cluster:[2] Cluster:[3] = Cluster:[4]

Figure 4.9: Results of running DIMK-means with k=5 and using 5 different starting points,
each chosen using the proposed initialization method.
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5.4 Performance Evaluation of DSMK-Means Algorithm

To test the performance of “DSMK-means” algorithm, the researcher here introduces the
datasets used in the test and reviews the results of the experiments, comparing the results
with standard K-means algorithm and “BNAK-Divide-and-Merge Clustering Algorithm
(BNAKDAM) [36]”.

5.4.1 Datasets Selection

The performance evaluation of DSMK-means algorithm is applied on nine different
artificial and real-world datasets (Ground_Separation, Separation_2Circle, Rnoisy,
Aggregation, Document_Sim, Weblogs, Image_Extraction, and Iris). Furthermore, the
performance of DSMK-means algorithm is evaluated using popular internal clustering
validity indices, which employed to evaluate the clustering results, such indices include:
Sum of Square Errors (SSE), Akaike Information Content (AIC), The Bayesian
Information Criterion (BIC), and Sum of Average Pairwise Similarities (SAPS); which
were described in the previous section. The results of such evaluation are compared with
standard K-means and BNAKDAM algorithms in order to identify the differences.
Table 5.10 and Table 5.11 show the comparison of the three clustering algorithms:
Standard K-means, BNAKDAM, and proposed DSMK-means algorithm.

Table 5.10 shows the comparison applied on the artificial datasets described in 5.1.1
subsection, while Table 5.11 shows the comparison applied on the real datasets described

before in 5.1.2 subsection.

Table 5. 10 Clustering algorithms mean results of artificial datasets over 50 runs (K is an input

parameter obtained from user, which represent clusters number).

Dataset ‘ algorithm K SSE AIC BIC SAPS

K-means 2855774.813 21565.0806 | 21565.74618 | 447.3896701

Ground_Separ | BNAKDAM 6 4845704853 215285757 | 21529.24129 | 439.9237214

ation DSMK- 6159061.753 | 2149450273 | 21495.25831 | 4354722115
means

K-means 1646936.594 | 14267.35041 | 14267.87804 | 333.0847394

Separation_2C | BNAKDAM 2 2154097.931 | 14254.68015 | 14255.20778 | 328.7270521

Il DSMK- 2577578554 | 14253.17946 | 14253.70709 | 3251817196
means

K-means 1306929.15 14744.83774 | 1474538305 | 342.5543868

Document_Si | BNAKDAM 858283.6622 | 14586.10662 | 14586.65193 | 341.2153644

m | DSMK- >

563265.0873 | 14480.64838 | 14481.19369 | 330.6457059

means
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Dataset ‘ algorithm K SSE AIC BIC SAPS

K-means 1486294.884 21177.29713 | 21177.57129 | 183.0293608
. BNAKDAM 865616.0755 19627.6786 19727.92254 | 172.2823015
Rnoisy DSMK 6
601464.5215 19143.84816 | 19144.07983 | 167.9597529
means
K-means 23875.26004 4952431143 | 4952520795 | 771.7122547
. BNAKDAM 24395.60533 49454.00687 | 49454.90339 | 772.9397117
Aggregation DSMK 7
25387.49156 49358.04323 | 49358.93976 | 769.6763346
means

It is observed from the experiment results on artificial datasets described in Table 5.10,
that DSMK-means has the best results among the other two algorithms in AIC, BIC, and
SAPS indices, while it did not have the best results with SSE index. The reason of the
SSE high score in DSMK-means algorithm depends on that the shape of cluster, as SSE
sums the square differences between each attribute value and the corresponding one in
the cluster centroid. In another example, SSE results for the Separation_2Circle dataset
using standard K-means algorithm as shown in Figure 4.10.(A) were lower than the
results using DSMK-means as in Figure 4.10.(F,E). It is known that the lower SSE score
is the better, but in this case it is visually clear that Figure 4.10.(A) -which obtained lower
SSE value- is very bad clustering result compared to the resulting cluster of DSMK-
means. This observation indicates the SSE score can not be used to judge the clustering
accuracy in cases of complex shapes. While the other indices give more accurate

indication for the best clustering results.

Table 5. 11 Clustering algorithms mean results of real datasets over 30 runs (K is an input

parameter obtained from user, which represent the number of clusters)

Dataset ‘ algorithm K SSE AlC BIC SAPS
K-means 1001992.83 8670.09057 | 8670.369323 | 187.3771721
Weblogs BNAKDAM 3 1326821.065 8747.432511 | 8747.711265 | 187.8597177
Dr:eh:n'é- 1552251.178 8631.13863 | 8600.417384 | 186.1648071
K-means 1799087.147 9185.98039 9186.28142 | 191.6552485

Image_Extract | BNAKDAM | 5 | 2091817.961 | 9305285303 | 9305586333 | 184.5466748
ion

DSMK- 3634144.897 9069.956687 | 9070.257717 | 180.7335421
means
K-means 223.37357471 | 9926.572673 | 9926.748764 | 149.5602358
IRIS BNAKDAM | 3 | 16235621565 | 9912.365894 | 9950.464253 | 1495591551
DSMK- 158.28685748 | 9899.236799 | 9899.4128911 | 149.5536856
means
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It is observed that DSMK-means algorithm scores smaller values for each type of
clustering validity indices (SSE, SAPS, AIC, and BIC) where the sometimes, DSMK-
means algorithm scores big values for clustering validity index (SSE). The value of
measurement algorithm depends on the nature of algorithm formula and datasets clusters
shapes, however DSMK-means could identify clusters with different complex shapes
that may increase the result of SSE index while decrease the rest of indices results.
Obviously, the clustering results of the DSMK-means clustering algorithm perform best

compared to k-means and BNAKDAM clustering algorithms.

To prove the efficiency of DSMK-means algorithm, the graph of datasets is shown to
make a comparison between the results of the standard K-means and DSMK-means
algorithm. The BNAKDAM results were not shown here as they were similar to the
graphs in Figure 4.10.(A,B,C).

¢ Interpreting and compare results of DSMK-means And K-means algorithms
with Separation_2Circle dataset:

The Separation_2Circle is composed of two different clusters with different shapes. In
Figure 4.10, the results show that the DSMK-means can detect both clusters with
different shapes and sizes while the standard K-means cannot deal with this kind of
dataset.
Each cluster identified by a different plotting character and color. It is observed that the
standard K-means get inefficient results as it split the inner circle true cluster into two
different groups as well as the outer circle; and merged each part of the inner circle with
another part from the outer circle. It’s observed that standard K-means always get the
same results with this dataset which are very bad results (which are plotted as red square
and blue circle in Figure 4.10.(A)). While the proposed DSMK-means algorithm gets
more efficient and accurate results in identifying each cluster very close to true ones. It
is worth mentioning that the results in Figure 4.10.( E and F) are the most common case

in the results of the algorithm.
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Figure 4.10: Results of running K-means and DSMK-means algorithms with K=2, on

Separation_2Circle dataset.
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¢ Interpreting and compare results of DSMK-means And K-means algorithms

with Image_Extraction dataset:

Figure 4.11 shows the results of running standard K-means and DSMK-means algorithms

with Image_Extraction dataset, which consists of two clusters.

It is observed that the standard K-means gets inefficient results as it splits the stripe-

shaped cluster (which is plotted as red square in Figure 4.11.(B)) to two different groups

(which are plotted as red squares and blue circles in Figure 4.11.(A)). Such results were

repeated each time the standard K-means algorithm was applied to the same dataset.

While the proposed DSMK-means algorithm gets more efficient and accurate results in

identifying each cluster very close to the true ones.

235 e
.
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125
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100
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Figure 4.11: Results of running K-means and DSMK-means algorithms with K=2, on

ol A |_ih|
)

Image_Extraction dataset.
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¢ Interpreting and compare results of DSMK-means And K-means algorithms

with Ground_Separation dataset:

Figure 4.12 shows the results of running the K-means and DSMK-means algorithms with

Ground_Separation dataset, which consists of 6 clusters. The shape of this dataset is one

of the most complicated shapes to be tested on standard K-means, which is can not

provide accurate clustering results that are close to the true clusters.

It is observed that the standard K-means get inefficient results as it split the ring-shaped

cluster (which is plotted in Figure 4.12.(A)) into two different groups, one of them was

identified as single cluster, while the other was merged with one of the circle-shaped

clusters in the left-bottom corner.

On the other hand, the proposed DSMK-means algorithm get more efficient and accurate

results in identifying each cluster very close to the true ones (which are plotted in Figure

4.12.(B)).

A

Standard K-means

0

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
X

| ® Cluster:[0] ® Cluster:[1] + Cluster:[2]

Cluster:[2] = Cluster:[4] © Cluster:[S] = Cluster Centroids

B.

DSMK-means

o]

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
X

| ® Cluster:[0] * Cluster:[1] + Cluster:[2]

Cluster:[2] = Cluster:[4] © Cluster:[S] = Cluster Cent|'0|ds|

Figure 4.12: Results of running K-means and DSMK-means with k=6, with Ground_Separation

dataset.
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¢ Interpreting and compare results of DSMK-means And K-means algorithms

with Aggregation dataset:

Figure 4.13 shows the results of running standard K-means and DSMK-means algorithms

on Aggregation dataset that consists of seven clusters .

The Aggregation is composed of seven different clusters with different shapes, which are

not well separated. In Figure 4.13.(A) the results show that standard K-means algorithm

could not identify the truce clusters as in it split one of the true clusters (in Figure 4.13.(A)

right image) into three different clusters.

DSMK-means algorithm could detect the true clusters with different shapes and sizes as
shown in Figure 4.13.(B).
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Figure 4.13: Results of K-means and DSMK-means with k=7, on Aggregation dataset.

Finally, DSMK-means algorithm is in general an improved clustering algorithm based

on standard K-means. It consists of two main stages: split and merge stage, and anti-

noise stage; these stages enable the algorithm to detect different clusters with different

shapes, sizes and densities. Moreover, DSMK-means is robust to noises. Experiments

demonstrate that DSMK-means clustering algorithm outperforms the traditional K-

means and BNAKDAM clustering algorithms.
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Chapter 5

5. Conclusion

This Chapter summarizes the thesis, discusses its findings and contributions, points to

limitations of the current work, and also outlines directions for future research.

6.1 Conclusion

In this thesis, researcher have introduced two new clustering algorithm: DIMK-
means “Distance-based Initialization Method for K-means clustering algorithm”, and
DSMK-means “Density-based Split-and-Merge K-means clustering Algorithm”.

DIMK-means algorithm presents a new way to select initial centroids in K-means
algorithm. This initialization method is as fast and as simple as the K-means algorithm
itself, which makes it attractive in practice. The main reason of this enhancement is to
make K-means less sensitive to the initialization process and to get consistent results
every time algorithm runs. Experimental results demonstrate that the modification
appears to give efficient performance when dealing with several virtual and real-world
datasets, and it is observed that the proposed method has substantially outperformed the
standard K-means in terms of both speed and accuracy.

DSMK-means algorithm developed from k-means which suffers from
unsatisfactory accuracy when the dataset contains clusters with different complex shapes,
sizes, noise and/or outliers. DSMK-means included Split and Merge technigque, which
are proposed to overcome standard K-means merging, or splitting true clusters when
working with datasets contains clusters with different complex shapes. In addition,
DSMK-means included Anti-noise technique, which was proposed to overcome the
sensitivity of standard K-means algorithm to noise. DSMK-means algorithm includes
solutions for cluster with complex shapes and datasets with noisy objects. Experimental
results demonstrate that the algorithm gives efficient performance when dealing with
several virtual and real-world datasets, and it is observed that the proposed method is

able to define clusters with different shapes that K-means cannot define such clusters.
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6.2 Future Work
The results of this thesis point to several interesting directions for future work, which
should be addressed and further developed to acquire better results with less cost, these

points include the following:

e Develop new techniques to identify most suitable initial centroids

e Improve DIMK-means algorithm through getting rid of the assumption of equal
number of objects in each cluster of any given dataset.

e The future work can be focused on reducing the time and computation complexity
of DSMK-means algorithm.

e Merging DIMK-means and DSMK-means algorithms into one comprehensive
algorithm with reduced

e Develop a new technique to identify the number of clusters (K) automatically is
one of the interesting challenges as parameter (K) has to be chosen subjectively

in standard K-means algorithm instead of having it as an input parameter.
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